
Generic Translations between Dedukti Theories

Thomas Traversié

Ongoing work with Florian Rabe (University of Erlangen)

Theories in the λΠ-calculus modulo theory

Many different theories of the λΠ-calculus modulo theory are related
– “S can be expressed in T”
– “S can be embedded in T”

We would like to exchange proofs from a source theory S to a target theory T
using generic translations that can be instantiated

We identify translation templates for the λΠ-calculus modulo theory

1/26

Syntax of the λΠ-calculus modulo theory

We use the three-level hierarchy à la LF [Saillard, 2015]

Objects M, N ::= c | x | λx : A. M | M N
Types A, B ::= a | Πx : A. B | λx : A. B | A M
Kinds K ::= Type | Πx : A. K
Terms t, u ::= M | A | K | Kind

Theories are composed of typed constants and rewrite rules

Theories T ::= ∅ | T, c : A | T, a : K | T, M ↪→ N | T, A ↪→ B

2/26

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

3/26

Theory morphisms in a nutshell

Principle: represent the constants of S by terms in T

Example: morphism from {∧, ¬, ∀} to {∨, ¬, ∃}
↪→ We represent ∧ using ∨ and ¬
↪→ We represent ∀ using ∃ and ¬

Correspond to signature morphisms in LF [Harper et al, 1994]
Extended to the λΠ-calculus modulo theory [Felicissimo, 2022]

4/26

Theory morphisms in LF

Translation µ

µ(x) = x µ(λx : A. M) = λx : µ(A). µ(M)
µ(c) = µc (parameter) µ(λx : A. B) = λx : µ(A). µ(B)
µ(a) = µa (parameter) µ(Πx : A. B) = Πx : µ(A). µ(B)
µ(M N) = µ(M) µ(N) µ(Πx : A. K) = Πx : µ(A). µ(K)
µ(A M) = µ(A) µ(M) µ(Kind) = Kind
µ(Type) = Type

µ is a theory morphism from S to T when
1. for every c : A ∈ S, there exists a term µc such that ⊢T µc : µ(A)
2. for every a : K ∈ S, there exists a term µa such that ⊢T µa : µ(K)

5/26

Theory morphisms in the λΠ-calculus modulo theory

Translation µ

µ(x) = x µ(λx : A. M) = λx : µ(A). µ(M)
µ(c) = µc (parameter) µ(λx : A. B) = λx : µ(A). µ(B)
µ(a) = µa (parameter) µ(Πx : A. B) = Πx : µ(A). µ(B)
µ(M N) = µ(M) µ(N) µ(Πx : A. K) = Πx : µ(A). µ(K)
µ(A M) = µ(A) µ(M) µ(Kind) = Kind
µ(Type) = Type

µ is a theory morphism from S to T when
1. for every c : A ∈ S, there exists a term µc such that ⊢T µc : µ(A)
2. for every a : K ∈ S, there exists a term µa such that ⊢T µa : µ(K)
3. for every ℓ ↪→ r ∈ S, we have µ(ℓ) ≡βR µ(r) in T

6/26

Theorems about theory morphisms

Conversions are preserved by theory morphisms
1. If A ≡βR B in S then µ(A) ≡βR µ(B) in T
2. If K ≡βR K ′ in S then µ(K) ≡βR µ(K ′) in T

Representation theorem
1. If Γ ⊢S M : A then µ(Γ) ⊢T µ(M) : µ(A)
2. If Γ ⊢S A : K then µ(Γ) ⊢T µ(A) : µ(K)
3. If Γ ⊢S K : Kind then µ(Γ) ⊢T µ(K) : Kind

7/26

Example of theory morphisms

Morphism from subset {∧, ¬, ∀} to subset {∨, ¬, ∃}

Parameters
µ(∧) = λp, q : Prop. ¬(¬p ∨ ¬q)

µ(∀) = λa : Set. λp : El a → Prop. ¬(∃ a (λx : El a. ¬(p x)))

The rewrite rules for encoding higher-order logic

El (x ⇝ y) ↪→ El x → El y

El o ↪→ Prop

satisfy the condition of theory morphisms

8/26

Limitations [Rabe and Sojakova, 2013]

Church encoding of simple type theory: terms are intrinsically typed

t : tm A

Curry encoding of simple type theory: terms are externally typed

t : tm with π : t # A

Theory morphism from Church to Curry encoding erases the typing information

t : tm A =⇒ µ(t) : tm

We would like to recover a proof of µ(t) # µ(A)

9/26

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

10/26

Logical relations in a nutshell

Principle: recover the proofs of invariants maintained by theory morphisms

If M : A in S then µ(M) : µ(A) and ρ(M) : ρ(A) µ(M)
– ρ(A) is a predicate encoding the invariant
– ρ(M) is proof that µ(M) satisfies the invariant

Example: preserve the typing information from Church encoding to Curry encoding

Logical relations for LF [Rabe and Sojakova, 2013]
≈ Parametricity for PTS [Bernardy et al, 2010]

11/26

Logical relations in LF and in the λΠ-calculus modulo theory

Translation ρ

ρ(x) = x∗

ρ(c) = ρc (parameter)
ρ(a) = ρa (parameter)
ρ(M N) = ρ(M) µ(N) ρ(N)
ρ(A M) = ρ(A) µ(M) ρ(M)
ρ(λx : A. M) = λx : µ(A). λx∗ : ρ(A) x . ρ(M)
ρ(λx : A. B) = λx : µ(A). λx∗ : ρ(A) x . ρ(B)
ρ(Πx : A. B) = λf : µ(Πx : A. B). Πx : µ(A). Πx∗ : ρ(A) x . ρ(B) (f x)
ρR(Πx : A. K) = Πx : µ(A). Πx∗ : ρ(A) x . ρR x (K)
ρR(Type) = µ(R) → Type
ρ(Kind) = Kind

Extra parameter R is used because we cannot abstract over types

12/26

Logical relations in LF and in the λΠ-calculus modulo theory

In LF: ρ is a logical relation between S and T when
1. for every c : A ∈ S, there exists a term ρc such that ⊢T ρc : ρ(A) µ(c)
2. for every a : K ∈ S, there exists a term ρa such that ⊢T ρa : ρa(K)

In the λΠ-calculus modulo theory: ρ is a logical relation between S and T when
1. for every c : A ∈ S, there exists a term ρc such that ⊢T ρc : ρ(A) µ(c)
2. for every a : K ∈ S, there exists a term ρa such that ⊢T ρa : ρa(K)
3. for every ℓ ↪→ r ∈ S, we have ρ(ℓ) ≡βR ρ(r) in T

13/26

Theorems about logical relations

Conversions are preserved by logical relations
1. If A ≡βR B in S then ρ(A) ≡βR ρ(B) in T
2. If K ≡βR K ′ in S then ρR(K) ≡βR ρR(K ′) in T

Abstraction theorem
1. If Γ ⊢S M : A, then ρ(Γ) ⊢T ρ(M) : ρ(A) µ(M)
2. If Γ ⊢S A : K , then ρ(Γ) ⊢T ρ(A) : ρA(K)
3. If Γ ⊢S K : Kind and Γ ⊢S A : K , then we have ρ(Γ) ⊢T ρA(K) : Kind

14/26

Example of logical relations [Rabe and Sojakova, 2013]

Theory morphism from Church encoding with intrinsically typed terms

t : tm A

to Curry encoding with externally typed terms

t : tm with π : t # A

erases the type
t : tm A =⇒ µ(t) : tm

Logical relation allow to recover the typing information

ρ(t) : µ(t) # µ(A)

15/26

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

16/26

Theory embeddings in a nutshell

Motivation
– Logical relations provide proofs of the invariants
– What if the invariants are essential to perform the translation?

Principle
– We mutually define a morphism and a relation
– The proofs of the invariants are incorporated to the morphisms

Generalization of interpretation of theories [Traversié, 2024]

17/26

Mutually defined translations

Translations m and r

m(x) = x
m(c) = mc (parameter)
m(a) = ma (parameter)
m(M N) = m(M) m(N) r(N)
m(A M) = m(A) m(M) r(M)
m(λx : A. M) = λx : m(A). λx∗ : r(A) x . m(M)
m(λx : A. B) = λx : m(A). λx∗ : r(A) x . m(B)
m(Πx : A. B) = Πx : m(A). Πx∗ : r(A) x . m(B)
m(Πx : A. K) = Πx : m(A). Πx∗ : r(A) x . m(K)
m(Type) = Type
m(Kind) = Kind

r(x) = x∗

r(c) = rc (parameter)
r(a) = ra (parameter)
r(M N) = r(M) m(N) r(N)
r(A M) = r(A) m(M) r(M)
r(λx : A. M) = λx : m(A). λx∗ : r(A) x . r(M)
r(λx : A. B) = λx : m(A). λx∗ : r(A) x . r(B)
r(Πx : A. B) = λf : m(Πx : A. B). Πx : m(A).

Πx∗ : r(A) x . r(B) (f x x∗)
rR (Πx : A. K) = Πx : m(A). Πx∗ : r(A) x . rR x (K)
rR (Type) = m(R) → Type
r(Kind) = Kind

r corresponds to logical relations and m now depends on r

18/26

Theory embeddings in LF and in the λΠ-calculus modulo theory

m and r are a theory embedding of S into T when

1. for every c : A ∈ S, there exist terms mc and rc such that

⊢T mc : m(A) and ⊢T rc : r(A) mc

2. for every a : K ∈ S, there exist terms ma and ra such that

⊢T ma : m(K) and ⊢T ra : r a(K)

3. for every ℓ ↪→ r ∈ S, we have m(ℓ) ≡βΣ m(r) and r(ℓ) ≡βΣ r(r) in T

In LF, we only have the first two conditions

19/26

Embedding theorem

1. If Γ ⊢S M : A then mr(Γ) ⊢T m(M) : m(A)
2. If Γ ⊢S A : K then mr(Γ) ⊢T m(A) : m(K)
3. If Γ ⊢S K : Kind then mr(Γ) ⊢T m(K) : Kind

4. If Γ ⊢S M : A then mr(Γ) ⊢T r(M) : r(A) m(M)
5. If Γ ⊢S A : K then mr(Γ) ⊢T r(A) : rA(K)
6. If Γ ⊢S K : Kind and Γ ⊢S A : K , then we have mr(Γ) ⊢T rA(K) : Kind

20/26

Examples of theory embeddings

Translation from natural numbers to integers
– Impossible to use theory morphism: natural numbers are non-negative integers
– Invariant inserted: non-negativity of the integers encoding natural numbers

Translation from sorted logic to unsorted logic
– Encode sorts into predicates
– Invariant inserted: sort predicate

21/26

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

22/26

Implementation in Dedukti

The user chooses the translation to apply

The translated file is produced

def and_mu : Prop_mu -> Prop_mu -> Prop_mu
:= TODO.

and the user must fill in the parameters

def and_mu : Prop_mu -> Prop_mu -> Prop_mu
:= p => q => not (or (not p) (not q)).

For now, the condition on rewrite rules has to be checked by the user

23/26

In practice

Available on GitHub

https://github.com/thomastraversie/TranslationTemplates

Several examples encoded in Dedukti
– From natural numbers to integers
– Between subsets of connectives
– From classical logic to intuitionistic logic
– From sorted logic to unsorted logic
– From Church to Curry encoding
– From deduction to computation

24/26

https://github.com/thomastraversie/TranslationTemplates

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

25/26

Takeaway message

Three translations templates for the λΠ-calculus modulo theory
– Theory morphisms
– Logical relations
– Theory embeddings

Implemented in the Dedukti language
– Conditions on constants checked automatically
– Conditions on rewrite rules not supported yet

Allow to easily transfer proofs between theories

26/26

	Theory Morphisms
	Logical Relations
	Theory Embeddings
	Implementation
	Conclusion

