Generic Translations between Dedukti Theories

Thomas Traversié

Ongoing work with Florian Rabe (University of Erlangen)

- Many different theories of the $\lambda\Pi$ -calculus modulo theory are related
 - "S can be expressed in \mathbb{T} "
 - " $\mathbb S$ can be embedded in $\mathbb T$ "
- We would like to **exchange proofs** from a source theory S to a target theory T using **generic** translations that can be instantiated

We identify translation templates for the $\lambda\Pi$ -calculus modulo theory

• We use the **three-level hierarchy** à *la* LF [Saillard, 2015]

Objects	$M, N ::= c \mid x \mid \lambda x : A. M \mid M N$
Types	$A,B ::= a \mid \Pi x : A. B \mid \lambda x : A. B \mid A M$
Kinds	$K ::=$ Type $\Pi x : A$. K
Terms	$t, u ::= M \mid A \mid K \mid Kind$

Theories are composed of typed constants and rewrite rules

Theories $\mathbb{T} ::= \varnothing \mid \mathbb{T}, c : A \mid \mathbb{T}, a : K \mid \mathbb{T}, M \hookrightarrow N \mid \mathbb{T}, A \hookrightarrow B$

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

 \blacksquare Principle: represent the constants of $\mathbb S$ by terms in $\mathbb T$

- \blacksquare Example: morphism from $\{\wedge,\neg,\forall\}$ to $\{\vee,\neg,\exists\}$
 - \hookrightarrow We represent \wedge using \vee and \neg
 - $\hookrightarrow \mathsf{We \ represent} \ \forall \ \mathsf{using} \ \exists \ \mathsf{and} \ \neg$
- Correspond to signature morphisms in LF [Harper et al, 1994]
 Extended to the λΠ-calculus modulo theory [Felicissimo, 2022]

 \blacksquare Translation μ

- μ is a **theory morphism** from \mathbb{S} to \mathbb{T} when
 - 1. for every $c: A \in \mathbb{S}$, there exists a term μ_c such that $\vdash_{\mathbb{T}} \mu_c : \mu(A)$
 - 2. for every $a: K \in \mathbb{S}$, there exists a term μ_a such that $\vdash_{\mathbb{T}} \mu_a : \mu(K)$

Theory morphisms in the $\lambda\Pi$ -calculus modulo theory

\blacksquare Translation μ

$$\mu(\lambda x : A. M) = \lambda x : \mu(A). \mu(M)$$

$$\mu(\lambda x : A. B) = \lambda x : \mu(A). \mu(B)$$

$$\mu(\Pi x : A. B) = \Pi x : \mu(A). \mu(B)$$

$$\mu(\Pi x : A. K) = \Pi x : \mu(A). \mu(K)$$

$$\mu(Kind) = Kind$$

• μ is a **theory morphism** from \mathbb{S} to \mathbb{T} when

- 1. for every $c: A \in \mathbb{S}$, there exists a term μ_c such that $\vdash_{\mathbb{T}} \mu_c: \mu(A)$
- 2. for every $a: K \in \mathbb{S}$, there exists a term μ_a such that $\vdash_{\mathbb{T}} \mu_a : \mu(K)$
- 3. for every $\ell \hookrightarrow r \in \mathbb{S}$, we have $\mu(\ell) \equiv_{\beta \mathcal{R}} \mu(r)$ in \mathbb{T}

Conversions are preserved by theory morphisms

- 1. If $A \equiv_{\beta \mathcal{R}} B$ in \mathbb{S} then $\mu(A) \equiv_{\beta \mathcal{R}} \mu(B)$ in \mathbb{T}
- 2. If $K \equiv_{\beta \mathcal{R}} K'$ in \mathbb{S} then $\mu(K) \equiv_{\beta \mathcal{R}} \mu(K')$ in \mathbb{T}

Representation theorem

- 1. If $\Gamma \vdash_{\mathbb{S}} M : A$ then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(M) : \mu(A)$
- 2. If $\Gamma \vdash_{\mathbb{S}} A : K$ then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(A) : \mu(K)$
- 3. If $\Gamma \vdash_{\mathbb{S}} K$: Kind then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(K)$: Kind

Example of theory morphisms

 \blacksquare Morphism from subset $\{\wedge,\neg,\forall\}$ to subset $\{\vee,\neg,\exists\}$

Parameters

$$\mu(\wedge) = \lambda p, q : Prop. \neg(\neg p \lor \neg q)$$
$$\mu(\forall) = \lambda a : Set. \ \lambda p : El \ a \to Prop. \neg(\exists \ a \ (\lambda x : El \ a. \neg(p \ x)))$$

The rewrite rules for encoding higher-order logic

$$EI \ (x \rightsquigarrow y) \hookrightarrow EI \ x \to EI \ y$$

 $\textit{EI } o \hookrightarrow \textit{Prop}$

satisfy the condition of theory morphisms

Church encoding of simple type theory: terms are intrinsically typed

t : tm A

Curry encoding of simple type theory: terms are externally typed

t: tm with π : t # A

Theory morphism from Church to Curry encoding erases the typing information

 $t: tm A \Longrightarrow \mu(t): tm$

• We would like to recover a proof of $\mu(t) \# \mu(A)$

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

Principle: recover the proofs of invariants maintained by theory morphisms

- If M : A in \mathbb{S} then $\mu(M) : \mu(A)$ and $\rho(M) : \rho(A) \ \mu(M)$
 - $-\rho(A)$ is a **predicate** encoding the invariant
 - $-\rho(M)$ is **proof** that $\mu(M)$ satisfies the invariant
- Example: preserve the typing information from Church encoding to Curry encoding
- Logical relations for LF [Rabe and Sojakova, 2013] ≈ Parametricity for PTS [Bernardy et al, 2010]

 \blacksquare Translation ρ

• Extra parameter R is used because we cannot abstract over types

- **In LF**: ρ is a logical relation between \mathbb{S} and \mathbb{T} when
 - 1. for every $c : A \in \mathbb{S}$, there exists a term ρ_c such that $\vdash_{\mathbb{T}} \rho_c : \rho(A) \ \mu(c)$
 - 2. for every $a: K \in \mathbb{S}$, there exists a term ρ_a such that $\vdash_{\mathbb{T}} \rho_a : \rho^a(K)$

In the $\lambda \Pi$ -calculus modulo theory: ρ is a logical relation between \mathbb{S} and \mathbb{T} when

- 1. for every $c : A \in \mathbb{S}$, there exists a term ρ_c such that $\vdash_{\mathbb{T}} \rho_c : \rho(A) \ \mu(c)$
- 2. for every $a: K \in \mathbb{S}$, there exists a term ρ_a such that $\vdash_{\mathbb{T}} \rho_a : \rho^a(K)$
- 3. for every $\ell \hookrightarrow r \in \mathbb{S}$, we have $\rho(\ell) \equiv_{\beta \mathcal{R}} \rho(r)$ in \mathbb{T}

Conversions are preserved by logical relations

- 1. If $A \equiv_{\beta \mathcal{R}} B$ in \mathbb{S} then $\rho(A) \equiv_{\beta \mathcal{R}} \rho(B)$ in \mathbb{T}
- 2. If $K \equiv_{\beta \mathcal{R}} K'$ in \mathbb{S} then $\rho^{R}(K) \equiv_{\beta \mathcal{R}} \rho^{R}(K')$ in \mathbb{T}

Abstraction theorem

- 1. If $\Gamma \vdash_{\mathbb{S}} M : A$, then $\rho(\Gamma) \vdash_{\mathbb{T}} \rho(M) : \rho(A) \ \mu(M)$
- 2. If $\Gamma \vdash_{\mathbb{S}} A : K$, then $\rho(\Gamma) \vdash_{\mathbb{T}} \rho(A) : \rho^A(K)$
- 3. If $\Gamma \vdash_{\mathbb{S}} K$: Kind and $\Gamma \vdash_{\mathbb{S}} A : K$, then we have $\rho(\Gamma) \vdash_{\mathbb{T}} \rho^A(K)$: Kind

Example of logical relations [Rabe and Sojakova, 2013]

Theory morphism from Church encoding with intrinsically typed terms

t:tm A

to Curry encoding with externally typed terms

t: tm with $\pi: t \# A$

erases the type

$$t: tm A \Longrightarrow \mu(t): tm$$

Logical relation allow to recover the typing information

 $\rho(t):\mu(t) \ \# \ \mu(A)$

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

Motivation

- Logical relations provide proofs of the invariants
- What if the invariants are essential to perform the translation?

Principle

- We mutually define a morphism and a relation
- The proofs of the invariants are incorporated to the morphisms
- Generalization of interpretation of theories [Traversié, 2024]

• Translations m and r

()			r(x)	=	x*
m(x)	=	X	r(c)	=	r _e (parameter)
m(c)	=	m_c (parameter)	r(c)		r (neverenter)
m(a)	=	$m_{\rm e}$ (parameter)	r(a)	=	r _a (parameter)
		(A4) = (A1) = (A1)	r(M N)	=	r(M) m(N) r(N)
m(N N)	=	m(N) m(N) r(N)	r(A M)	_	r(A) m(M) r(M)
m(A M)	=	m(A) m(M) r(M)		_	$\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$
$m(\lambda x \cdot A M)$	_	$\lambda \mathbf{x} \cdot \mathbf{m}(A) \lambda \mathbf{x}^* \cdot \mathbf{r}(A) \mathbf{x} \mathbf{m}(M)$	$r(\lambda x : A. M)$	=	$\lambda x : m(A). \lambda x^* : r(A) x. r(M)$
	_	$(A) \rightarrow (A) \rightarrow (A) \rightarrow (A) \rightarrow (B)$	$r(\lambda x : A. B)$	=	$\lambda x : m(A). \ \lambda x^* : r(A) x. r(B)$
$m(\lambda x : A. B)$	=	$\lambda x : m(A)$. $\lambda x^{-} : r(A) x . m(B)$	$r(\Pi x \cdot A, B)$	_	$\lambda f \cdot m(\Pi x \cdot A \cdot B) \cdot \Pi x \cdot m(A)$
$m(\Pi x : A. B)$	=	$\Pi x : m(A). \ \Pi x^* : r(A) x. m(B)$	/(IIX : /II D)	_	
$m(\Pi x \cdot A K)$	_	$\Pi \mathbf{x} \cdot \mathbf{m}(\mathbf{A}) = \Pi \mathbf{x}^* \cdot \mathbf{r}(\mathbf{A}) \times \mathbf{m}(\mathbf{K})$			$\Pi x^{*} : r(A) x. r(B) (f x x^{*})$
(TA : A: K)	_	-	$r^{R}(\Pi x : A. K)$	=	$\Pi x : m(A). \ \Pi x^* : r(A) x. \ r^{R \times K}(K)$
m(Type)	=	Туре	$r^{R}(Type)$	_	$m(R) \rightarrow \text{Type}$
m(Kind)	=	Kind	/ (Type)	_	$m(R) \rightarrow Type$
· · /			<i>r</i> (Kind)	=	Kind

 \blacksquare r corresponds to logical relations and m now depends on r

m and *r* are a **theory embedding** of \mathbb{S} into \mathbb{T} when

1. for every $c: A \in \mathbb{S}$, there exist terms m_c and r_c such that

 $\vdash_{\mathbb{T}} m_c : m(A) \text{ and } \vdash_{\mathbb{T}} r_c : r(A) m_c$

2. for every $a : K \in \mathbb{S}$, there exist terms m_a and r_a such that

 $\vdash_{\mathbb{T}} m_a : m(K) \text{ and } \vdash_{\mathbb{T}} r_a : r^a(K)$

3. for every $\ell \hookrightarrow r \in \mathbb{S}$, we have $m(\ell) \equiv_{\beta \Sigma} m(r)$ and $r(\ell) \equiv_{\beta \Sigma} r(r)$ in \mathbb{T}

In LF, we only have the first two conditions

- 1. If $\Gamma \vdash_{\mathbb{S}} M : A$ then $mr(\Gamma) \vdash_{\mathbb{T}} m(M) : m(A)$ 2. If $\Gamma \vdash_{\mathbb{S}} A : K$ then $mr(\Gamma) \vdash_{\mathbb{T}} m(A) : m(K)$
- 3. If $\Gamma \vdash_{\mathbb{S}} K$: Kind then $mr(\Gamma) \vdash_{\mathbb{T}} m(K)$: Kind
- 4. If $\Gamma \vdash_{\mathbb{S}} M : A$ then $mr(\Gamma) \vdash_{\mathbb{T}} r(M) : r(A) m(M)$
- 5. If $\Gamma \vdash_{\mathbb{S}} A : K$ then $mr(\Gamma) \vdash_{\mathbb{T}} r(A) : r^A(K)$
- 6. If $\Gamma \vdash_{\mathbb{S}} K$: Kind and $\Gamma \vdash_{\mathbb{S}} A : K$, then we have $mr(\Gamma) \vdash_{\mathbb{T}} r^A(K)$: Kind

Translation from natural numbers to integers

- Impossible to use theory morphism: natural numbers are non-negative integers
- Invariant inserted: non-negativity of the integers encoding natural numbers

Translation from sorted logic to unsorted logic

- Encode sorts into predicates
- Invariant inserted: sort predicate

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

Implementation in **DEDUKTI**

The user chooses the translation to apply

The translated file is produced

```
def and_mu :Prop_mu -> Prop_mu -> Prop_mu
:= TODO.
```

and the user must fill in the parameters

def and_mu :Prop_mu -> Prop_mu -> Prop_mu
 := p => q => not (or (not p) (not q)).

For now, the condition on rewrite rules has to be checked by the user

Available on GitHub

https://github.com/thomastraversie/TranslationTemplates

- Several examples encoded in DEDUKTI
 - From natural numbers to integers
 - Between subsets of connectives
 - From classical logic to intuitionistic logic
 - From sorted logic to unsorted logic
 - From Church to Curry encoding
 - From deduction to computation

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

• Three translations templates for the $\lambda\Pi$ -calculus modulo theory

- Theory morphisms
- Logical relations
- Theory embeddings
- Implemented in the DEDUKTI language
 - Conditions on constants checked automatically
 - Conditions on rewrite rules not supported yet
- Allow to easily transfer proofs between theories