Translation Templates between Dedukti Theories

KWARC Seminar

Thomas Traversié

- The Edinburgh Logical Framework (LF) [Harper et al, 1993]
 - $\lambda\text{-calculus}$ + dependent types
 - Implemented in Twelf
- The $\lambda \Pi$ -calculus modulo rewriting [Cousineau and Dowek, 2007]
 - λ -calculus + dependent types + rewrite rules
 - Implemented in Dedukti

The $\lambda \Pi$ -calculus modulo rewriting

Syntax

Objects	$M, N \coloneqq c \mid x \mid \lambda x : A. M \mid M N$
Types	$A,B ::= a \mid \Pi x : A. B \mid \lambda x : A. B \mid A M$
Kinds	$K ::=$ Type $\Pi x : A$. K
Terms	$t, u \coloneqq M \mid A \mid K \mid Kind$

 $Theories \qquad \qquad \mathbb{T} ::= \varnothing \mid \mathbb{T}, c : A \mid \mathbb{T}, a : K \mid \mathbb{T}, M \hookrightarrow N \mid \mathbb{T}, A \hookrightarrow B$

- Terms considered modulo the conversion $\equiv_{\beta \mathcal{R}}$
 - Generated by $\beta\text{-reduction}$ and rewrite rules
 - Reflexive, symmetric and transitive

Interoperability between proof systems

- Many proof systems = need for interoperability
 - Re-use proofs
 - Re-check proofs
- Dedukti = middleware between proof systems
 - Exchange proofs to/from Dedukti
 - Exchange proofs inside Dedukti

Goal: automate translations of proofs between Dedukti theories

Translations inside logical frameworks

- Meta-level mechanisms on LF logics
 - Theory morphisms [Harper et al, 1994]
 - Logical relations [Rabe and Sojakova, 2013]
- Meta-level mechanisms on Dedukti theories
 - Theory morphisms [Felicissimo, 2022]
 - Individual interpretations [T., 2024]
 - No general meta-theorem

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

Theory morphisms – Translation

 \blacksquare Principle: represent the theory $\mathbb S$ inside the theory $\mathbb T$

 \blacksquare Translation μ

$\mu(x)$	=	X	$\mu(\lambda x : A. M)$	=	$\lambda x: \mu(A). \ \mu(M)$
$\mu(c)$	=	μ_{c} (parameter)	$\mu(\lambda x : A. B)$	=	λx : $\mu(A)$. $\mu(B)$
$\mu(a)$	=	μ_{a} (parameter)	$\mu(\Pi x : A. B)$	=	$\Pi x : \mu(A). \ \mu(B)$
$\mu(M N)$	=	$\mu(M) \ \mu(N)$	$\mu(\Pi x : A. K)$	=	$\Pi x : \mu(A). \ \mu(K)$
$\mu(A M)$	=	$\mu(A) \ \mu(M)$	$\mu(Kind)$	=	Kind
$\mu(Type)$	=	Туре			

Theory morphisms – Definition

In LF

 μ is a **theory morphism** from \mathbb{S} to \mathbb{T} when

- 1. for every $c: A \in \mathbb{S}$, there exists a term μ_c such that $\vdash_{\mathbb{T}} \mu_c : \mu(A)$
- 2. for every $a: K \in \mathbb{S}$, there exists a term μ_a such that $\vdash_{\mathbb{T}} \mu_a: \mu(K)$

In the \lambda \Pi-calculus modulo rewriting

Additionally, for every $\ell \hookrightarrow r \in \mathbb{S}$, we require in \mathbb{T} **X** The rewrite rule $\mu(\ell) \hookrightarrow \mu(r)$ **X** The rewriting $\mu(\ell) \hookrightarrow_{\beta \mathcal{R}}^* \mu(r)$ **√** The conversion $\mu(\ell) \equiv_{\beta \mathcal{R}} \mu(r)$

Theorems about theory morphisms

Convertibility is preserved by theory morphisms

- 1. If $A \equiv_{\beta \mathcal{R}} B$ in \mathbb{S} then $\mu(A) \equiv_{\beta \mathcal{R}} \mu(B)$ in \mathbb{T}
- 2. If $K \equiv_{\beta \mathcal{R}} K'$ in \mathbb{S} then $\mu(K) \equiv_{\beta \mathcal{R}} \mu(K')$ in \mathbb{T}

Preservation theorem

- 1. If $\Gamma \vdash_{\mathbb{S}} M : A$ then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(M) : \mu(A)$
- 2. If $\Gamma \vdash_{\mathbb{S}} A : K$ then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(A) : \mu(K)$
- 3. If $\Gamma \vdash_{\mathbb{S}} K$: Kind then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(K)$: Kind

Church encoding of simple type theory

Terms are intrinsically typed

$$\begin{split} tp: \mathsf{Type} \\ &\rightsquigarrow: tp \to tp \to tp \\ tm: tp \to \mathsf{Type} \\ &lam: \Pi A, B: tp. \ (tm \ A \to tm \ B) \to tm \ (A \rightsquigarrow B) \\ &app: \Pi A, B: tp. \ tm \ (A \rightsquigarrow B) \to tm \ A \to tm \ B \end{split}$$

 $app \ A \ B \ (lam \ A \ B \ f) \ u \hookrightarrow f \ u$

Curry encoding of simple type theory

Terms are externally typed with the relation relation

tp: Type $lam: (tm \to tm) \to tm$ $\cdots : tp \to tp \to tp$ $app: tm \to tm \to tm$ tm: Type $app (lam f) u \hookrightarrow f u$

 $\begin{array}{l} \#: tm \to tp \to \mathsf{Type} \\ \#_{lam}: \Pi A, B: tp. \ \Pi f: tm \to tm. \ (\Pi x: tm. \ x \ \# \ A \to (f \ x) \ \# \ B) \to (lam \ f) \ \# \ (A \rightsquigarrow B) \\ \#_{app}: \Pi A, B: tm. \ \Pi f, x: tm. \ f \ \# \ (A \rightsquigarrow B) \to x \ \# \ A \to (app \ f \ x) \ \# \ B \\ \#_{app} \ A \ B \ (lam \ f) \ u \ (\#_{lam} \ A \ B \ f \ f^*) \ u^* \hookrightarrow f^* \ u \ u^* \end{array}$

Church-Curry theory morphism

Parameters expressed in the Curry encoding

$$\mu(tp) = tp$$

$$\mu(\rightsquigarrow) = \rightsquigarrow$$

$$\mu(tm) = \lambda A : tp. tm$$

$$\mu(lam) = \lambda A, B : tp. \lambda f : tm \rightarrow tm. lam f$$

$$\mu(app) = \lambda A, B : tp. \lambda f : tm. \lambda x : tm. app f x$$

- We check that µ(app A B (lam A B f) u) and µ(f u) are convertible in the Curry encoding
- The theory morphism erases the typing information

$$t: tm A \Longrightarrow \mu(t): tm$$

- Translation between different subsets of connectives, for instance from $\{\land, \neg, \forall\}$ to $\{\lor, \neg, \exists\}$
- Translation from classical logic to intuitionistic logic
- Translation from natural deduction encoded via constants to natural deduction encoded via rewrite rules

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

Logical relations – Principle

The Church-Curry morphism erases the typing information

 $t: tm A \Longrightarrow \mu(t): tm$

but we would like to **recover** a proof of $\mu(t) \# \mu(A)$

General idea: recover the proofs of invariants maintained by theory morphisms

- If M : A in \mathbb{S} then $\mu(M) : \mu(A)$ and $\rho(M) : \rho(A) \ \mu(M)$
 - $-\rho(A)$ is a **predicate** encoding the invariant
 - $-\rho(M)$ is proof that $\mu(M)$ satisfies the invariant

Logical relations – Translation

 \blacksquare Translation ρ

• Extra parameter R is used because we cannot abstract over types

Logical relations – Definition

In LF

 ρ is a logical relation over μ when

- 1. for every $c : A \in \mathbb{S}$, there exists a term ρ_c such that $\vdash_{\mathbb{T}} \rho_c : \rho(A) \ \mu(c)$
- 2. for every $a: K \in \mathbb{S}$, there exists a term ρ_a such that $\vdash_{\mathbb{T}} \rho_a : \rho^a(K)$

In the $\lambda \Pi$ -calculus modulo rewriting

Additionally, for every $\ell \hookrightarrow r \in \mathbb{S}$, we require $\rho(\ell) \equiv_{\beta \mathcal{R}} \rho(r)$ in \mathbb{T}

Theorems about logical relations

Conversions are preserved by logical relations

- 1. If $A \equiv_{\beta \mathcal{R}} B$ in \mathbb{S} then $\rho(A) \equiv_{\beta \mathcal{R}} \rho(B)$ in \mathbb{T}
- 2. If $K \equiv_{\beta \mathcal{R}} K'$ in \mathbb{S} then $\rho^{R}(K) \equiv_{\beta \mathcal{R}} \rho^{R}(K')$ in \mathbb{T}

Abstraction theorem

- 1. If $\Gamma \vdash_{\mathbb{S}} M : A$, then $\rho(\Gamma) \vdash_{\mathbb{T}} \rho(M) : \rho(A) \ \mu(M)$
- 2. If $\Gamma \vdash_{\mathbb{S}} A : K$, then $\rho(\Gamma) \vdash_{\mathbb{T}} \rho(A) : \rho^A(K)$
- 3. If $\Gamma \vdash_{\mathbb{S}} K$: Kind and $\Gamma \vdash_{\mathbb{S}} A : K$, then we have $\rho(\Gamma) \vdash_{\mathbb{T}} \rho^A(K)$: Kind

Church-Curry logical relation

Parameters expressed in the Curry encoding

$$\begin{split} \rho(tm) &= \lambda A : tp. \ \lambda A^* : unit. \ \lambda x : tm. \ x \ \# \ A \\ \rho(lam) &= \lambda A. \ \lambda A^*. \ \lambda B. \ \lambda B^*. \ \lambda f : tm \to tm. \ \lambda f^* : (\Pi x : tm. \ x \ \# \ A \to (f \ x) \ \# \ B). \\ &= \#_{lam} \ A \ B \ f \ f^* \\ \rho(app) &= \lambda A. \ \lambda A^*. \ \lambda B. \ \lambda B^*. \ \lambda f : tm. \ \lambda f^* : f \ \# \ (A \rightsquigarrow B). \ \lambda x : tm. \ \lambda x^* : x \ \# \ A. \\ &= \#_{app} \ A \ B \ f \ x \ f^* \ x^* \end{split}$$

• We check that $\rho(app \ A \ B \ (lam \ A \ B \ f) \ u)$ and $\rho(f \ u)$ are convertible in the Curry encoding

The logical relation preserves the typing information

 $t: tm A \Longrightarrow \mu(t): tm \text{ and } \rho(t): \mu(t) \# \mu(A)$

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

Theory embeddings – Principle

Motivation

- Logical relations provide proofs of the invariants
- What if the invariants are essential to perform the translation?

General idea

- We mutually define a morphism and a relation
- The proofs of the invariants are incorporated to the morphisms
- Generalization of interpretation of theories [T., 2024]

Theory embeddings – Mutually defined translations

\blacksquare Translations m and r

 \blacksquare *r* corresponds to a logical relation and *m* now depends on *r*

Theory embeddings – Definition

• *m* and *r* are a **theory embedding** of \mathbb{S} into \mathbb{T} when

1. for every $c : A \in \mathbb{S}$, there exist terms m_c and r_c such that

 $\vdash_{\mathbb{T}} m_c : m(A) \text{ and } \vdash_{\mathbb{T}} r_c : r(A) m_c$

2. for every $a : K \in \mathbb{S}$, there exist terms m_a and r_a such that

 $\vdash_{\mathbb{T}} m_a : m(K) \text{ and } \vdash_{\mathbb{T}} r_a : r^a(K)$

3. for every $\ell \hookrightarrow r \in \mathbb{S}$, we have $m(\ell) \equiv_{\beta \Sigma} m(r)$ and $r(\ell) \equiv_{\beta \Sigma} r(r)$ in \mathbb{T}

In LF, we only have the first two conditions

Theorems about theory embeddings

Conversions are preserved by theory embeddings

Embedding theorem

- 1. If $\Gamma \vdash_{\mathbb{S}} M : A$ then $mr(\Gamma) \vdash_{\mathbb{T}} m(M) : m(A)$
- 2. If $\Gamma \vdash_{\mathbb{S}} A : K$ then $mr(\Gamma) \vdash_{\mathbb{T}} m(A) : m(K)$
- 3. If $\Gamma \vdash_{\mathbb{S}} K$: Kind then $mr(\Gamma) \vdash_{\mathbb{T}} m(K)$: Kind

Theory embeddings – Examples

- Translation from natural numbers to integers
 Invariant: natural numbers are represented by positive integers
- Translation from sorted logic to unsorted logic

Invariant: sorted terms are represented by unsorted terms that satisfy the sort predicate

Theory embeddings – Limitations

- We artificially insert invariants everywhere, even when they are not needed
- We can use theory morphisms with depend pairs instead, and later eliminate these dependent pairs

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

- The user specifies the translation to apply, the source file, the target file and the name of the output
- The output file is generated and the user must fill in the parameters
 - The conditions on constants are checked automatically
 - The conditions on rewrite rules have to be checked by the user
- All the results and proofs of the source theory are now expressed in the target theory

In practice

Available online

https://github.com/Deducteam/TranslationTemplates

All the examples have been implemented in Dedukti

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

Takeaway message

- Three translations templates for the $\lambda\Pi$ -calculus modulo rewriting
 - Theory morphisms
 - Logical relations
 - Theory embeddings
- Implemented in Dedukti to easily transfer proofs between theories
- Future work
 - Study the limits of the different translation mechanisms
 - Improve theory embeddings