Translation Templates between Dedukti Theories

KWARC Seminar

Thomas Traversié

! iC; D universite

CentraleSupélec PARIS-SACLAY

Logical frameworks

m The Edinburgh Logical Framework (LF) [Harper et al, 1993]
— A-calculus + dependent types
— Implemented in Twelf

m The All-calculus modulo rewriting [Cousineau and Dowek, 2007]
— A-calculus + dependent types + rewrite rules
— Implemented in Dedukti

1/30

The All-calculus modulo rewriting

m Syntax
Objects M;N:i=c|x|x:AM|MN
Types ABi=a|MNx:A B|XM:AB|AM
Kinds K = Type | Nx: A. K
Terms t,uz=M| A| K| Kind
Theories T:=2g|T,c:A|T,a:K| T M= N|T,A— B

m Terms considered modulo the conversion =gr
— Generated by S-reduction and rewrite rules
— Reflexive, symmetric and transitive

2/30

Interoperability between proof systems

m Many proof systems = need for interoperability
— Re-use proofs
— Re-check proofs

m Dedukti = middleware between proof systems
— Exchange proofs to/from Dedukti
— Exchange proofs inside Dedukti

Goal: automate translations of proofs between Dedukti theories

3/30

Translations inside logical frameworks

m Meta-level mechanisms on LF logics
— Theory morphisms [Harper et al, 1994]
— Logical relations [Rabe and Sojakova, 2013]

m Meta-level mechanisms on Dedukti theories
— Theory morphisms [Felicissimo, 2022]
— Individual interpretations [T., 2024]
— No general meta-theorem

4/30

Outline

Theory Morphisms

5/30

Theory morphisms — Translation

m Principle: represent the theory S inside the theory T

m Translation p

w(x) = x p(Ax : A. M) Ax : p(A). (M)
u(c) = . (parameter) wAx A B) = Ax:pu(A). w(B)
w(a) =, (parameter) p(Mx A B) = MNx:p(A). u(B)
WM N) = p(M) p(N) p(Nx - A K) = Nx: p(A). u(K)
WA M) = p(A) u(M) 1(Kind) Kind

1(Type) = Type

6/30

Theory morphisms — Definition

m In LF

1 is a theory morphism from S to T when

1. for every c: A € S, there exists a term p. such that Fr pc @ p(A)
2. for every a: K €S, there exists a term p, such that bt ua @ pu(K)

m In the All-calculus modulo rewriting

Additionally, for every £ < r € S, we require in T
X The rewrite rule p(€) — p(r)

X The rewriting () <5z p(r)

v The conversion u(¢) =gr w(r)

7/30

Theorems about theory morphisms

m Convertibility is preserved by theory morphisms
1. If A=ggr Bin S then pu(A) =gr u(B) in T
2. If K=gr K’ inS then u(K) =pr u(K') in T

m Preservation theorem
1. If T'ks M Athen u(T) Fr w(M) : u(A)
2. IfT'ks A K then p(T) Fr p(A) = p(K)
3. If I ks K @ Kind then p(T) Fr 1(K) : Kind

8/30

Church encoding of simple type theory

Terms are intrinsically typed

tp : Type

~ It — tp — tp

tm: tp — Type

lam :TA,B : tp. (tm A — tm B) — tm (A~ B)
app:NA,B: tp. tm (A~ B) - tm A— tm B

app AB(lamAB f)u<—fu

9/30

Curry encoding of simple type theory

Terms are externally typed with the relation relation #

tp : Type lam: (tm — tm) — tm
~ Lt — tp — tp app :tm— tm — tm
tm : Type app (lam f)u—f u

:tm — tp — Type

Hiam A B : tp. Nf - tm — tm. (Nx : tm. x # A — (f x) # B) — (lam f) # (A~ B)
Happ :MNAB:tm. Nf x:tm. f # (A~ B) > x# A— (app f x) # B
Happ AB (lam) u (#iam ABFf) u™ — " uu*

10/30

Church-Curry theory morphism

m Parameters expressed in the Curry encoding
u(tp) = tp
(=) =
u(tm) = MA@ tp. tm
u(lam) = MNA, B : tp. AMf : tm — tm. lam f
w(app) = AA, B tp. Mf - tm. Ax : tm. app f x

m We check that u(app A B (lam A B f) u) and p(f u) are convertible in the Curry
encoding

m The theory morphism erases the typing information

t:tm A= u(t):tm

11/30

Theory morphisms — Examples

m Translation between different subsets of connectives, for instance from {A,—,V} to
{\/, ™ EI}

m Translation from classical logic to intuitionistic logic

m Translation from natural deduction encoded via constants
to natural deduction encoded via rewrite rules

12/30

Outline

Logical Relations

13/30

Logical relations — Principle

m The Church-Curry morphism erases the typing information
t:tm A= pu(t):tm

but we would like to recover a proof of u(t) # p(A)
m General idea: recover the proofs of invariants maintained by theory morphisms

mIf M:AinS then (M) : u(A) and p(M) : p(A) (M)
— p(A) is a predicate encoding the invariant
— p(M) is proof that u(M) satisfies the invariant

14/30

Logical relations — Translation

= Translation p

p(x) = x

p(c) = pc (parameter)
p(a) = pa, (parameter)
p(M N) = p(M) p(N) p(N)
p(AM = p(A) w(M) p(M)

M) = Ax:p(A). AT p(A) x. p(M)
Ax : p(A). Ax* o p(A) x. p(B)

=
2%
a2 S

=

I

p(Mx:A. B) = X :p(llx: A B). Nx:p(A). Nx*: p(A) x. p(B) (f x)
pR(Nx: A K) = Nx: u(A). Nx* : p(A) x. pR *(K)

pR(Type) = u(R) — Type

p(Kind) = Kind

m Extra parameter R is used because we cannot abstract over types

15/30

Logical relations — Definition

m In LF

p is a logical relation over p when

1. for every c: A €S, there exists a term pc such that Fr pc @ p(A) p(c)
2. for every a: K €S, there exists a term p, such that 1 p, : p?(K)

m In the All-calculus modulo rewriting

Additionally, for every £ < r € S, we require p({) =gr p(r) in T

16/30

Theorems about logical relations

m Conversions are preserved by logical relations
1. If A=ggr B in S then p(A) =gr p(B) in T
2. If K =sr K’ in'S then pf(K) =pr pR(K')in T

m Abstraction theorem
1. If T'ks M : A, then p(T) Fr p(M) : p(A) u(M)
2. If T ks A: K, then p(I) Fr p(A) : p(K)
3. IfTks K :Kind and T 5 A : K, then we have p(I) Fr p*(K) : Kind

17/30

Church-Curry logical relation

m Parameters expressed in the Curry encoding

p(tm) = AA : tp. AA* s unit. Ax tm. x # A

p(lam) = AA. NA*. AB. \B*. Af : tm — tm. Af* : (Mx : tm. x # A — (f x) # B).
H#iom ABf f*

plapp) = AA XA AB.AB* . A i tm. M o f # (A~ B). Ax: tm. Ax™ 1 x # A.
Happ ABF x " x*

m We check that p(app A B (lam A B f) u) and p(f u) are convertible in the Curry encoding

m The logical relation preserves the typing information
t:tm A= u(t): tmand p(t) : p(t) # u(A)

18/30

Outline

Theory Embeddings

19/30

Theory embeddings — Principle

= Motivation
— Logical relations provide proofs of the invariants
— What if the invariants are essential to perform the translation?

m General idea
— We mutually define a morphism and a relation
— The proofs of the invariants are incorporated to the morphisms

m Generalization of interpretation of theories [T., 2024]

20/30

Theory embeddings — Mutually defined translations

m Translations m and r

m(x) - r(x) = x"
s = e pmramarer) e e
m(a = m, (parameter HM N) — /(M) m(N) r(N)
mi 2 mi (A M) = H(A) m(M) (M)
m(A M) = m(A) m(M) r(M) r(Ax : A. M) = Ax:m(A). Xx* : r(A) x. r(M)
mAx: AM) = A m(A). A r(A) e m(M) r(Ax : A. B) = Ax:m(A). Xx™ : r(A) x. r(B)
mAx s A B) = Axim(A). Ao r(A) . m(B) r(Nx : A. B) = Af:m(Mx: A. B). Mx : m(A).
m(Nx:A. B) = TNx:m(A). lNx" :r(A) x. m(B) Mx* : r(A) x. r(B) (f x x*)
m(MNx :)A K) = Nx:m(A). Nx" :r(A) x. m(K) RMx: A K) = Mx:m(A). Nx* : r(A) x. /& *(K)
m(Type = Type R(Type) ' : ' i

’ B ‘ r*(Type) = m(R) — Type
m(Kind) = Kind r(Kind) — Kind

m r corresponds to a logical relation and m now depends on r

21/30

Theory embeddings — Definition

m m and r are a theory embedding of S into T when

1. for every c: A €S, there exist terms m. and rc such that

Fr me : m(A) and bt e r(A) me
2. for every a: K € S, there exist terms m, and r, such that

Fr m,: m(K) and b1y r?(K)

3. for every £ — r € S, we have m(¢) =gs m(r) and r(¢) =gs r(r) in T

m In LF, we only have the first two conditions

22/30

Theorems about theory embeddings

m Conversions are preserved by theory embeddings

s Embedding theorem

1.
2.
3.

If T'Fs M : A then mr(T) Fr m(M) : m(A)
If I's A: K then mr(I') Fr m(A) : m(K)
If T ks K : Kind then mr(I") Fr m(K) : Kind

If T'ks M : Athen mr(T) Fr r(M) : r(A) m(M)
If I ks A: K then mr(F) Fr r(A) : r*(K)
If T s K : Kind and [¢ A : K, then we have mr(I) Fr r*(K) : Kind

23/30

Theory embeddings — Examples

m Translation from natural numbers to integers
Invariant: natural numbers are represented by positive integers

m Translation from sorted logic to unsorted logic
Invariant: sorted terms are represented by unsorted terms that satisfy the sort predicate

24/30

Theory embeddings — Limitations

m We artificially insert invariants everywhere, even when they are not needed

m We can use theory morphisms with depend pairs instead, and later eliminate these
dependent pairs

25/30

Outline

Implementation

26/30

Implementation in Dedukti

m The user specifies the translation to apply, the source file, the target file and the name of

the output

m The output file is generated and the user must fill in the parameters
— The conditions on constants are checked automatically
— The conditions on rewrite rules have to be checked by the user

m All the results and proofs of the source theory are now expressed in the target theory

27/30

In practice

m Available online

https://github.com/Deducteam/TranslationTemplates

m All the examples have been implemented in Dedukti

28/30

https://github.com/Deducteam/TranslationTemplates

Outline

Conclusion

29/30

Takeaway message

m Three translations templates for the All-calculus modulo rewriting
— Theory morphisms
— Logical relations
— Theory embeddings

m Implemented in Dedukti to easily transfer proofs between theories

m Future work
— Study the limits of the different translation mechanisms
— Improve theory embeddings

30/30

	Theory Morphisms
	Logical Relations
	Theory Embeddings
	Implementation
	Conclusion

