
Translation Templates between Dedukti Theories
KWARC Seminar

Thomas Traversié

Logical frameworks

The Edinburgh Logical Framework (LF) [Harper et al, 1993]
– λ-calculus + dependent types
– Implemented in Twelf

The λΠ-calculus modulo rewriting [Cousineau and Dowek, 2007]
– λ-calculus + dependent types + rewrite rules
– Implemented in Dedukti

1/30

The λΠ-calculus modulo rewriting

Syntax

Objects M, N ::= c | x | λx : A. M | M N
Types A, B ::= a | Πx : A. B | λx : A. B | A M
Kinds K ::= Type | Πx : A. K
Terms t, u ::= M | A | K | Kind

Theories T ::= ∅ | T, c : A | T, a : K | T, M ↪→ N | T, A ↪→ B

Terms considered modulo the conversion ≡βR

– Generated by β-reduction and rewrite rules
– Reflexive, symmetric and transitive

2/30

Interoperability between proof systems

Many proof systems = need for interoperability
– Re-use proofs
– Re-check proofs

Dedukti = middleware between proof systems
– Exchange proofs to/from Dedukti
– Exchange proofs inside Dedukti

Goal: automate translations of proofs between Dedukti theories

3/30

Translations inside logical frameworks

Meta-level mechanisms on LF logics
– Theory morphisms [Harper et al, 1994]
– Logical relations [Rabe and Sojakova, 2013]

Meta-level mechanisms on Dedukti theories
– Theory morphisms [Felicissimo, 2022]
– Individual interpretations [T., 2024]
– No general meta-theorem

4/30

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

5/30

Theory morphisms – Translation

Principle: represent the theory S inside the theory T

Translation µ

µ(x) = x µ(λx : A. M) = λx : µ(A). µ(M)
µ(c) = µc (parameter) µ(λx : A. B) = λx : µ(A). µ(B)
µ(a) = µa (parameter) µ(Πx : A. B) = Πx : µ(A). µ(B)
µ(M N) = µ(M) µ(N) µ(Πx : A. K) = Πx : µ(A). µ(K)
µ(A M) = µ(A) µ(M) µ(Kind) = Kind
µ(Type) = Type

6/30

Theory morphisms – Definition

In LF

µ is a theory morphism from S to T when
1. for every c : A ∈ S, there exists a term µc such that ⊢T µc : µ(A)
2. for every a : K ∈ S, there exists a term µa such that ⊢T µa : µ(K)

In the λΠ-calculus modulo rewriting

Additionally, for every ℓ ↪→ r ∈ S, we require in T
✗ The rewrite rule µ(ℓ) ↪→ µ(r)
✗ The rewriting µ(ℓ) ↪→∗

βR µ(r)
✓ The conversion µ(ℓ) ≡βR µ(r)

7/30

Theorems about theory morphisms

Convertibility is preserved by theory morphisms
1. If A ≡βR B in S then µ(A) ≡βR µ(B) in T
2. If K ≡βR K ′ in S then µ(K) ≡βR µ(K ′) in T

Preservation theorem
1. If Γ ⊢S M : A then µ(Γ) ⊢T µ(M) : µ(A)
2. If Γ ⊢S A : K then µ(Γ) ⊢T µ(A) : µ(K)
3. If Γ ⊢S K : Kind then µ(Γ) ⊢T µ(K) : Kind

8/30

Church encoding of simple type theory

Terms are intrinsically typed

tp : Type
⇝ : tp → tp → tp
tm : tp → Type
lam : ΠA, B : tp. (tm A → tm B) → tm (A⇝ B)
app : ΠA, B : tp. tm (A⇝ B) → tm A → tm B

app A B (lam A B f) u ↪→ f u

9/30

Curry encoding of simple type theory

Terms are externally typed with the relation relation #

tp : Type lam : (tm → tm) → tm
⇝ : tp → tp → tp app : tm → tm → tm
tm : Type app (lam f) u ↪→ f u

: tm → tp → Type
#lam : ΠA, B : tp. Πf : tm → tm. (Πx : tm. x # A → (f x) # B) → (lam f) # (A⇝ B)
#app : ΠA, B : tm. Πf , x : tm. f # (A⇝ B) → x # A → (app f x) # B
#app A B (lam f) u (#lam A B f f ∗) u∗ ↪→ f ∗ u u∗

10/30

Church-Curry theory morphism

Parameters expressed in the Curry encoding

µ(tp) = tp
µ(⇝) =⇝
µ(tm) = λA : tp. tm
µ(lam) = λA, B : tp. λf : tm → tm. lam f
µ(app) = λA, B : tp. λf : tm. λx : tm. app f x

We check that µ(app A B (lam A B f) u) and µ(f u) are convertible in the Curry
encoding

The theory morphism erases the typing information

t : tm A =⇒ µ(t) : tm

11/30

Theory morphisms – Examples

Translation between different subsets of connectives, for instance from {∧, ¬, ∀} to
{∨, ¬, ∃}

Translation from classical logic to intuitionistic logic

Translation from natural deduction encoded via constants
to natural deduction encoded via rewrite rules

12/30

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

13/30

Logical relations – Principle

The Church-Curry morphism erases the typing information

t : tm A =⇒ µ(t) : tm

but we would like to recover a proof of µ(t) # µ(A)

General idea: recover the proofs of invariants maintained by theory morphisms

If M : A in S then µ(M) : µ(A) and ρ(M) : ρ(A) µ(M)
– ρ(A) is a predicate encoding the invariant
– ρ(M) is proof that µ(M) satisfies the invariant

14/30

Logical relations – Translation

Translation ρ

ρ(x) = x∗

ρ(c) = ρc (parameter)
ρ(a) = ρa (parameter)
ρ(M N) = ρ(M) µ(N) ρ(N)
ρ(A M) = ρ(A) µ(M) ρ(M)
ρ(λx : A. M) = λx : µ(A). λx∗ : ρ(A) x . ρ(M)
ρ(λx : A. B) = λx : µ(A). λx∗ : ρ(A) x . ρ(B)
ρ(Πx : A. B) = λf : µ(Πx : A. B). Πx : µ(A). Πx∗ : ρ(A) x . ρ(B) (f x)
ρR(Πx : A. K) = Πx : µ(A). Πx∗ : ρ(A) x . ρR x (K)
ρR(Type) = µ(R) → Type
ρ(Kind) = Kind

Extra parameter R is used because we cannot abstract over types

15/30

Logical relations – Definition

In LF

ρ is a logical relation over µ when
1. for every c : A ∈ S, there exists a term ρc such that ⊢T ρc : ρ(A) µ(c)
2. for every a : K ∈ S, there exists a term ρa such that ⊢T ρa : ρa(K)

In the λΠ-calculus modulo rewriting

Additionally, for every ℓ ↪→ r ∈ S, we require ρ(ℓ) ≡βR ρ(r) in T

16/30

Theorems about logical relations

Conversions are preserved by logical relations
1. If A ≡βR B in S then ρ(A) ≡βR ρ(B) in T
2. If K ≡βR K ′ in S then ρR(K) ≡βR ρR(K ′) in T

Abstraction theorem
1. If Γ ⊢S M : A, then ρ(Γ) ⊢T ρ(M) : ρ(A) µ(M)
2. If Γ ⊢S A : K , then ρ(Γ) ⊢T ρ(A) : ρA(K)
3. If Γ ⊢S K : Kind and Γ ⊢S A : K , then we have ρ(Γ) ⊢T ρA(K) : Kind

17/30

Church-Curry logical relation

Parameters expressed in the Curry encoding

ρ(tm) = λA : tp. λA∗ : unit. λx : tm. x # A
ρ(lam) = λA. λA∗. λB. λB∗. λf : tm → tm. λf ∗ : (Πx : tm. x # A → (f x) # B).

#lam A B f f ∗

ρ(app) = λA. λA∗. λB. λB∗. λf : tm. λf ∗ : f # (A⇝ B). λx : tm. λx∗ : x # A.

#app A B f x f ∗ x∗

We check that ρ(app A B (lam A B f) u) and ρ(f u) are convertible in the Curry encoding

The logical relation preserves the typing information

t : tm A =⇒ µ(t) : tm and ρ(t) : µ(t) # µ(A)

18/30

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

19/30

Theory embeddings – Principle

Motivation
– Logical relations provide proofs of the invariants
– What if the invariants are essential to perform the translation?

General idea
– We mutually define a morphism and a relation
– The proofs of the invariants are incorporated to the morphisms

Generalization of interpretation of theories [T., 2024]

20/30

Theory embeddings – Mutually defined translations

Translations m and r

m(x) = x
m(c) = mc (parameter)
m(a) = ma (parameter)
m(M N) = m(M) m(N) r(N)
m(A M) = m(A) m(M) r(M)
m(λx : A. M) = λx : m(A). λx∗ : r(A) x . m(M)
m(λx : A. B) = λx : m(A). λx∗ : r(A) x . m(B)
m(Πx : A. B) = Πx : m(A). Πx∗ : r(A) x . m(B)
m(Πx : A. K) = Πx : m(A). Πx∗ : r(A) x . m(K)
m(Type) = Type
m(Kind) = Kind

r(x) = x∗

r(c) = rc (parameter)
r(a) = ra (parameter)
r(M N) = r(M) m(N) r(N)
r(A M) = r(A) m(M) r(M)
r(λx : A. M) = λx : m(A). λx∗ : r(A) x . r(M)
r(λx : A. B) = λx : m(A). λx∗ : r(A) x . r(B)
r(Πx : A. B) = λf : m(Πx : A. B). Πx : m(A).

Πx∗ : r(A) x . r(B) (f x x∗)
rR (Πx : A. K) = Πx : m(A). Πx∗ : r(A) x . rR x (K)
rR (Type) = m(R) → Type
r(Kind) = Kind

r corresponds to a logical relation and m now depends on r

21/30

Theory embeddings – Definition

m and r are a theory embedding of S into T when

1. for every c : A ∈ S, there exist terms mc and rc such that

⊢T mc : m(A) and ⊢T rc : r(A) mc

2. for every a : K ∈ S, there exist terms ma and ra such that

⊢T ma : m(K) and ⊢T ra : r a(K)

3. for every ℓ ↪→ r ∈ S, we have m(ℓ) ≡βΣ m(r) and r(ℓ) ≡βΣ r(r) in T

In LF, we only have the first two conditions

22/30

Theorems about theory embeddings

Conversions are preserved by theory embeddings

Embedding theorem
1. If Γ ⊢S M : A then mr(Γ) ⊢T m(M) : m(A)
2. If Γ ⊢S A : K then mr(Γ) ⊢T m(A) : m(K)
3. If Γ ⊢S K : Kind then mr(Γ) ⊢T m(K) : Kind

4. If Γ ⊢S M : A then mr(Γ) ⊢T r(M) : r(A) m(M)
5. If Γ ⊢S A : K then mr(Γ) ⊢T r(A) : rA(K)
6. If Γ ⊢S K : Kind and Γ ⊢S A : K , then we have mr(Γ) ⊢T rA(K) : Kind

23/30

Theory embeddings – Examples

Translation from natural numbers to integers
Invariant: natural numbers are represented by positive integers

Translation from sorted logic to unsorted logic
Invariant: sorted terms are represented by unsorted terms that satisfy the sort predicate

24/30

Theory embeddings – Limitations

We artificially insert invariants everywhere, even when they are not needed

We can use theory morphisms with depend pairs instead, and later eliminate these
dependent pairs

25/30

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

26/30

Implementation in Dedukti

The user specifies the translation to apply, the source file, the target file and the name of
the output

The output file is generated and the user must fill in the parameters
– The conditions on constants are checked automatically
– The conditions on rewrite rules have to be checked by the user

All the results and proofs of the source theory are now expressed in the target theory

27/30

In practice

Available online

https://github.com/Deducteam/TranslationTemplates

All the examples have been implemented in Dedukti

28/30

https://github.com/Deducteam/TranslationTemplates

Outline

Theory Morphisms

Logical Relations

Theory Embeddings

Implementation

Conclusion

29/30

Takeaway message

Three translations templates for the λΠ-calculus modulo rewriting
– Theory morphisms
– Logical relations
– Theory embeddings

Implemented in Dedukti to easily transfer proofs between theories

Future work
– Study the limits of the different translation mechanisms
– Improve theory embeddings

30/30

	Theory Morphisms
	Logical Relations
	Theory Embeddings
	Implementation
	Conclusion

