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Interoperability between proof systems

The λΠ-calculus modulo rewriting [Cousineau and Dowek, 2007]
– LF (= λ-calculus + dependent types) + rewrite rules
– Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]

Dedukti = middleware to exchange proofs to/from/inside Dedukti

Theory morphisms = translation template between theories
– Defined for LF [Harper et al, 1994]
– Extended to Dedukti [Felicissimo, 2022]

Goal: apply theory morphisms to translate between Dedukti theories
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The λΠ-calculus modulo rewriting

Syntax

Objects M, N ::= c | x | λx : A. M | M N
Types A, B ::= a | Πx : A. B | λx : A. B | A M
Kinds K ::= Type | Πx : A. K
Terms t, u ::= M | A | K | Kind

Theories T ::= ∅ | T, c : A | T, a : K | T, M ↪→ N | T, A ↪→ B

Terms considered modulo the conversion ≡βR

– Generated by β-reduction and rewrite rules
– Reflexive, symmetric and transitive
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Outline

Theory Morphisms

Case study: Sort-Erasure Translations

Implementation

Conclusion
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Translation

Principle: represent the theory S inside the theory T

Translation µ

µ(x) = x µ(λx : A. M) = λx : µ(A). µ(M)
µ(c) = µc (parameter) µ(λx : A. B) = λx : µ(A). µ(B)
µ(a) = µa (parameter) µ(Πx : A. B) = Πx : µ(A). µ(B)
µ(M N) = µ(M) µ(N) µ(Πx : A. K ) = Πx : µ(A). µ(K )
µ(A M) = µ(A) µ(M) µ(Kind) = Kind
µ(Type) = Type
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Definition

In LF

µ is a theory morphism from S to T when
1. for every c : A ∈ S, there exists a term µc such that ⊢T µc : µ(A)
2. for every a : K ∈ S, there exists a term µa such that ⊢T µa : µ(K)

In the λΠ-calculus modulo rewriting

Additionally, for every ℓ ↪→ r ∈ S, we require in T
✗ The rewrite rule µ(ℓ) ↪→ µ(r)
✗ The rewriting µ(ℓ) ↪→∗

βR µ(r)
✓ The conversion µ(ℓ) ≡βR µ(r)
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Results

Convertibility is preserved by theory morphisms
1. If A ≡βR B in S then µ(A) ≡βR µ(B) in T
2. If K ≡βR K ′ in S then µ(K) ≡βR µ(K ′) in T

Preservation theorem
1. If Γ ⊢S M : A then µ(Γ) ⊢T µ(M) : µ(A)
2. If Γ ⊢S A : K then µ(Γ) ⊢T µ(A) : µ(K)
3. If Γ ⊢S K : Kind then µ(Γ) ⊢T µ(K) : Kind
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Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

Set : Type El : Set → Type Prop : Type Prf : Prop → Type

⇒ : Prop → Prop → Prop
Prf (p ⇒ q) ↪→ Prf p → Prf q

∀ : Πa : Set. (El a → Prop) → Prop
alli : Πa : Set. Πp : El a → Prop. (Πx : El a. Prf (p x)) → Prf (∀ a p)
alle : Πa : Set. Πp : El a → Prop. Prf (∀ a p) → Πx : El a. Prf (p x)
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Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

tm : Type Set : Type Prop : Type Prf : Prop → Type # : tm → Set → Type

⇒ : Prop → Prop → Prop
Prf (p ⇒ q) ↪→ Prf p → Prf q

∀ : Πa : Set. (Πx : tm. x # a → Prop) → Prop
Prf (∀ a p) ↪→ Πx : tm. Πh : x # a. Prf (p x h)
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From HFOL to SFOL

Intuition: erasing the sorting information and recovering it later

Problem: we need the sorting information for µ(alle)
Solution: we use dependent pairs to bundle together a term and its sorting information

Theory morphism:

µ(El) = λa : Set. pair a
µ(∀) = λa : Set. λp : pair a → Prop. ∀ a (λx . λh. p (mk_pair a x h))

µ(⇒) = ⇒ and its rewrite rule is trivially preserved

Remark: we cannot define the morphism if ∀ is defined with a rewrite rule in HFOL
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Unsorted logic UFOL

All terms have the generic sort tm

tm : Type Prop : Type Prf : Prop → Type

⇒ : Prop → Prop → Prop
Prf (p ⇒ q) ↪→ Prf p → Prf q

∀ : (tm → Prop) → Prop
Prf (∀ p) ↪→ Πx : tm. Prf (p x)
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From SFOL to UFOL

Intuition: transforming sorts into sort predicates

µ(Set) = tm → Prop µ(#) = λx : tm. λa : tm → Prop. Prf (a x)

Problem: we need a proof of the sort predicate

µ(∀) = λa : tm → Prop. λp : (Πx : tm. Prf (a x) → Prop). ∀ (λx : tm. (a x) ⇒ (p x ?))

Solution: we use a dependent implication

Prf (p ⇒d q) ↪→ Πh : Prf p. Prf (q h)
µ(∀) = λa : tm → Prop. λp : (Πx : tm. Prf (a x) → Prop). ∀ (λx : tm. (a x) ⇒d (λh. p x h))

We have µ(Prf (∀ a p)) ≡βR µ(Πx : tm. Πh : x # a. Prf (p x h)) in UFOL
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Implementation in Dedukti

The user specifies the source file, the target file and the name of the output

The output file is generated and the user must fill in the parameters
– The conditions on constants are checked automatically
– The conditions on rewrite rules have to be checked by the user

All the results and proofs of the source theory are now expressed in the target theory
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In practice

Available online

https://github.com/Deducteam/TranslationTemplates

All the examples have been implemented in Dedukti
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Takeaway message

Theory morphisms for the λΠ-calculus modulo rewriting
– Implemented in Dedukti to easily transfer proofs between theories
– Rewrite rules in the target theory: simplify the proof obligations
– Rewrite rules in the source theory: create additional constraints

Technical features (dependent pairs and dependent implications) may be necessary

Potential application: translation between the encodings of B and TLA+ in Dedukti

Thank you!
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