Morphisms between Dedukti theories

ICSPA Meeting 2026

Thomas Traversié
joint work with Florian Rabe (FAU Erlangen)

nic P, université

CentraleSupélec = PARIS-SACLAY

S

b

zlea—

Interoperability between proof systems

m The All-calculus modulo rewriting [Cousineau and Dowek, 2007]
— LF (= A-calculus + dependent types) + rewrite rules
— Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]

Thomas Traversié Morphisms between Dedukti theories 1/17

Interoperability between proof systems

m The All-calculus modulo rewriting [Cousineau and Dowek, 2007]
— LF (= A-calculus + dependent types) + rewrite rules
— Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]

m Dedukti = middleware to exchange proofs to/from/inside Dedukti

Thomas Traversié Morphisms between Dedukti theories 1/17

Interoperability between proof systems

m The All-calculus modulo rewriting [Cousineau and Dowek, 2007]
— LF (= A-calculus + dependent types) + rewrite rules
— Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]

m Dedukti = middleware to exchange proofs to/from/inside Dedukti

m Theory morphisms = translation template between theories
— Defined for LF [Harper et al, 1994]
— Extended to Dedukti [Felicissimo, 2022]

Thomas Traversié Morphisms between Dedukti theories 1/17

Interoperability between proof systems

m The All-calculus modulo rewriting [Cousineau and Dowek, 2007]
— LF (= A-calculus + dependent types) + rewrite rules
— Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]

m Dedukti = middleware to exchange proofs to/from/inside Dedukti

m Theory morphisms = translation template between theories
— Defined for LF [Harper et al, 1994]
— Extended to Dedukti [Felicissimo, 2022]

Goal: apply theory morphisms to translate between Dedukti theories

Thomas Traversié Morphisms between Dedukti theories 1/17

The All-calculus modulo rewriting

m Syntax

Thomas Traversié

Objects
Types
Kinds

Terms

Theories

M;N:i=c|x|x:AM|MN

ABi=a|MNx:A B|XM:AB|AM
K = Type | Nx: A. K
t,uz=M| A| K| Kind

Ti:=0 |T,c:A|T,a:K|T,M— N|T,A< B

Morphisms between Dedukti theories

2/17

The All-calculus modulo rewriting

m Syntax
Objects M;N:i=c|x|x:AM|MN
Types ABi=a|MNx:A B|XM:AB|AM
Kinds K = Type | Nx: A. K
Terms t,uz=M| A| K| Kind
Theories T:=2g|T,c:A|T,a:K| T M= N|T,A— B

m Terms considered modulo the conversion =gr
— Generated by S-reduction and rewrite rules
— Reflexive, symmetric and transitive

Thomas Traversié Morphisms between Dedukti theories 2/17

Outline

Theory Morphisms

Thomas Traversié Morphisms between Dedukti theories 3/17

Translation

m Principle: represent the theory S inside the theory T

Thomas Traversié Morphisms between Dedukti theories 4/17

Translation

m Principle: represent the theory S inside the theory T

m Translation p

w(x) = x u(Ax s A. M) Ax : p(A). (M)
u(c) = pc (parameter) wAx A B) = Ax:pu(A). w(B)
w(a) =, (parameter) p(Mx A B) = MNx:p(A). w(B)
WM N) = p(M) p(N) p(Mx - A K) = Nx: p(A). u(K)
WA M) = p(A) u(M) 1(Kind) Kind

#(Type) = Type

Thomas Traversié Morphisms between Dedukti theories 4/17

Definition

mInLF
1 is a theory morphism from S to T when

1. for every c: A € S, there exists a term p. such that br pc @ p(A)
2. for every a: K € S, there exists a term p, such that Fr p, : p(K)

Thomas Traversié Morphisms between Dedukti theories 5/17

Definition

m In LF

1 is a theory morphism from S to T when

1. for every c: A € S, there exists a term p. such that br pc @ p(A)
2. for every a: K € S, there exists a term p, such that Fr p, : p(K)

m In the All-calculus modulo rewriting

Additionally, for every £ < r € S, we require in T
X The rewrite rule p(€) < u(r)

X The rewriting u(¢) <5z p(r)

v The conversion u(¢) =gr w(r)

Thomas Traversié Morphisms between Dedukti theories 5/17

Results

m Convertibility is preserved by theory morphisms
1. If A=ggr Bin S then pu(A) =gr u(B) in T
2. If K=pgr K’ inS then u(K) =pr w(K') in T

Thomas Traversié Morphisms between Dedukti theories 6/17

Results

m Convertibility is preserved by theory morphisms
1. If A=ggr Bin S then pu(A) =gr u(B) in T
2. If K=pgr K’ inS then u(K) =pr w(K') in T

m Preservation theorem
1. If T'Fs M : A then u(T) Fr w(M) : u(A)
2. IfT'ks A: K then p(T) Fr p(A) = p(K)
3. If I ks K : Kind then p(T) Fr p1(K) @ Kind

Thomas Traversié Morphisms between Dedukti theories 6/17

Outline

Case study: Sort-Erasure Translations

Thomas Traversié Morphisms between Dedukti theories 7/17

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

Thomas Traversié Morphisms between Dedukti theories 8/17

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

Set : Type El : Set — Type Prop : Type Prf : Prop — Type

Thomas Traversié Morphisms between Dedukti theories 8/17

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

Set : Type El : Set — Type Prop : Type Prf : Prop — Type

= : Prop — Prop — Prop

Prf (p=q) — Prf p— Prf q

Thomas Traversié Morphisms between Dedukti theories 8/17

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

Set : Type El : Set — Type Prop : Type Prf : Prop — Type

= : Prop — Prop — Prop
Prf (p=q) — Prf p— Prf q

V:MNa: Set. (El a — Prop) — Prop
ally: Ma: Set. Np : El a— Prop. (Mx : El a. Prf (p x)) — Prf (V a p)
alle : Ma: Set. Mp: El a— Prop. Prf (¥ a p) — MNx : El a. Prf (p x)

Thomas Traversié Morphisms between Dedukti theories 8/17

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

Thomas Traversié Morphisms between Dedukti theories 9/17

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

tm : Type Set : Type Prop : Type Prf : Prop — Type # . tm — Set — Type

Thomas Traversié Morphisms between Dedukti theories 9/17

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

tm : Type Set : Type Prop : Type Prf : Prop — Type # . tm — Set — Type

= : Prop — Prop — Prop

Prf (p=q) < Prf p— Prf g

Thomas Traversié Morphisms between Dedukti theories 9/17

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

tm : Type Set : Type Prop : Type Prf : Prop — Type # . tm — Set — Type

= : Prop — Prop — Prop
Prf (p=q) — Prf p— Prf q

vV :Ma: Set. (Mx : tm. x # a — Prop) — Prop
Prf (Y ap) = MNx:tm. Nh:x # a. Prf (p x h)

Thomas Traversié Morphisms between Dedukti theories 9/17

From HFOL to SFOL

m Intuition: erasing the sorting information and recovering it later

Thomas Traversié Morphisms between Dedukti theories 10/17

From HFOL to SFOL

m Intuition: erasing the sorting information and recovering it later
Problem: we need the sorting information for p(alle)

Thomas Traversié Morphisms between Dedukti theories 10/17

From HFOL to SFOL

m Intuition: erasing the sorting information and recovering it later
Problem: we need the sorting information for p(alle)
Solution: we use dependent pairs to bundle together a term and its sorting information

Thomas Traversié Morphisms between Dedukti theories 10/17

From HFOL to SFOL

m Intuition: erasing the sorting information and recovering it later
Problem: we need the sorting information for p(alle)
Solution: we use dependent pairs to bundle together a term and its sorting information

m Theory morphism:

w(El) = A\a: Set. pair a
w(V) = Xa: Set. A\p: pair a — Prop. V a (Ax. Ah. p (mk_pair a x h))

Thomas Traversié Morphisms between Dedukti theories 10/17

From HFOL to SFOL

m Intuition: erasing the sorting information and recovering it later
Problem: we need the sorting information for p(alle)
Solution: we use dependent pairs to bundle together a term and its sorting information

m Theory morphism:
w(El) = A\a: Set. pair a

w(V) = Xa: Set. A\p: pair a — Prop. V a (Ax. Ah. p (mk_pair a x h))

m u(=) = = and its rewrite rule is trivially preserved

Thomas Traversié Morphisms between Dedukti theories 10/17

From HFOL to SFOL

m Intuition: erasing the sorting information and recovering it later
Problem: we need the sorting information for p(alle)
Solution: we use dependent pairs to bundle together a term and its sorting information

m Theory morphism:

w(El) = A\a: Set. pair a
w(V) = Xa: Set. A\p: pair a — Prop. V a (Ax. Ah. p (mk_pair a x h))

m u(=) = = and its rewrite rule is trivially preserved

m Remark: we cannot define the morphism if V is defined with a rewrite rule in HFOL

Thomas Traversié Morphisms between Dedukti theories 10/17

Unsorted logic UFOL

All terms have the generic sort tm

Thomas Traversié Morphisms between Dedukti theories 11/17

Unsorted logic UFOL

All terms have the generic sort tm

tm : Type Prop : Type Prf : Prop — Type

Thomas Traversié Morphisms between Dedukti theories 11/17

Unsorted logic UFOL

All terms have the generic sort tm

tm : Type Prop : Type Prf : Prop — Type

= : Prop — Prop — Prop

Prf (p=q) < Prf p— Prf g

Thomas Traversié Morphisms between Dedukti theories 11/17

Unsorted logic UFOL

All terms have the generic sort tm

tm : Type Prop : Type Prf : Prop — Type

= : Prop — Prop — Prop

Prf (p=q) < Prf p— Prf g

Y : (tm — Prop) — Prop
Prf (¥ p) < MNx : tm. Prf (p x)

Thomas Traversié Morphisms between Dedukti theories 11/17

From SFOL to UFOL

m Intuition: transforming sorts into sort predicates

u(Set) = tm — Prop w(#) = Ax : tm. Xa: tm — Prop. Prf (a x)

Thomas Traversié Morphisms between Dedukti theories 12/17

From SFOL to UFOL

m Intuition: transforming sorts into sort predicates

u(Set) = tm — Prop w(#) = Ax : tm. Xa: tm — Prop. Prf (a x)

m Problem: we need a proof of the sort predicate

w(¥Y) = Aa:tm— Prop. Ap: (MNx : tm. Prf (a x) — Prop). ¥ (Ax : tm. (a x) = (p x 7))

Thomas Traversié Morphisms between Dedukti theories 12/17

From SFOL to UFOL

m Intuition: transforming sorts into sort predicates

u(Set) = tm — Prop w(#) = Ax : tm. Xa: tm — Prop. Prf (a x)

m Problem: we need a proof of the sort predicate

w(¥Y) = Aa:tm— Prop. Ap: (MNx : tm. Prf (a x) — Prop). ¥ (Ax : tm. (a x) = (p x 7))
m Solution: we use a dependent implication

Prf (p=qq) — Nh: Prf p. Prf (q h)
w(¥) = Aa:tm — Prop. Ap: (Mx : tm. Prf (a x) — Prop). ¥ (Ax : tm. (a x) =4 (Ah. p x h))

Thomas Traversié Morphisms between Dedukti theories 12/17

From SFOL to UFOL

m Intuition: transforming sorts into sort predicates

u(Set) = tm — Prop w(#) = Ax : tm. Xa: tm — Prop. Prf (a x)

m Problem: we need a proof of the sort predicate

w(¥Y) = Aa:tm— Prop. Ap: (MNx : tm. Prf (a x) — Prop). ¥ (Ax : tm. (a x) = (p x 7))

m Solution: we use a dependent implication

Prf (p=qq) — Nh: Prf p. Prf (q h)
w(¥) = Aa:tm — Prop. Ap: (Mx : tm. Prf (a x) — Prop). ¥ (Ax : tm. (a x) =4 (Ah. p x h))

m We have u(Prf (¥ a p)) =pr u(MNx : tm. Nh: x # a. Prf (p x h)) in UFOL

Thomas Traversié Morphisms between Dedukti theories 12/17

Outline

Implementation

Thomas Traversié Morphisms between Dedukti theories 13/17

Implementation in Dedukti

m The user specifies the source file, the target file and the name of the output

Thomas Traversié Morphisms between Dedukti theories 14/17

Implementation in Dedukti

m The user specifies the source file, the target file and the name of the output

m The output file is generated and the user must fill in the parameters
— The conditions on constants are checked automatically
— The conditions on rewrite rules have to be checked by the user

Thomas Traversié Morphisms between Dedukti theories 14/17

Implementation in Dedukti

m The user specifies the source file, the target file and the name of the output

m The output file is generated and the user must fill in the parameters
— The conditions on constants are checked automatically
— The conditions on rewrite rules have to be checked by the user

m All the results and proofs of the source theory are now expressed in the target theory

Thomas Traversié Morphisms between Dedukti theories 14/17

In practice

m Available online

https://github.com/Deducteam/TranslationTemplates

Thomas Traversié Morphisms between Dedukti theories 15/17

https://github.com/Deducteam/TranslationTemplates

In practice

m Available online

https://github.com/Deducteam/TranslationTemplates

m All the examples have been implemented in Dedukti

Thomas Traversié Morphisms between Dedukti theories 15/17

https://github.com/Deducteam/TranslationTemplates

Outline

Conclusion

Thomas Traversié Morphisms between Dedukti theories 16/17

Takeaway message

m Theory morphisms for the All-calculus modulo rewriting
— Implemented in Dedukti to easily transfer proofs between theories
— Rewrite rules in the target theory: simplify the proof obligations
— Rewrite rules in the source theory: create additional constraints

Thomas Traversié Morphisms between Dedukti theories 17/17

Takeaway message

m Theory morphisms for the All-calculus modulo rewriting
— Implemented in Dedukti to easily transfer proofs between theories
— Rewrite rules in the target theory: simplify the proof obligations
— Rewrite rules in the source theory: create additional constraints

m Technical features (dependent pairs and dependent implications) may be necessary

Thomas Traversié Morphisms between Dedukti theories 17/17

Takeaway message

m Theory morphisms for the All-calculus modulo rewriting
— Implemented in Dedukti to easily transfer proofs between theories
— Rewrite rules in the target theory: simplify the proof obligations
— Rewrite rules in the source theory: create additional constraints

m Technical features (dependent pairs and dependent implications) may be necessary

m Potential application: translation between the encodings of B and TLA+ in Dedukti

Thomas Traversié Morphisms between Dedukti theories 17/17

Takeaway message

m Theory morphisms for the All-calculus modulo rewriting
— Implemented in Dedukti to easily transfer proofs between theories
— Rewrite rules in the target theory: simplify the proof obligations
— Rewrite rules in the source theory: create additional constraints

m Technical features (dependent pairs and dependent implications) may be necessary

m Potential application: translation between the encodings of B and TLA+ in Dedukti

Thank you!

Thomas Traversié Morphisms between Dedukti theories 17/17

	Theory Morphisms
	Case study: Sort-Erasure Translations
	Implementation
	Conclusion

