

Morphisms between Dedukti theories

ICSPA Meeting 2026

Thomas Traversié

joint work with Florian Rabe (FAU Erlangen)

Interoperability between proof systems

- The $\lambda\Pi$ -calculus modulo rewriting [Cousineau and Dowek, 2007]
 - LF (= λ -calculus + dependent types) + rewrite rules
 - Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]

Interoperability between proof systems

- The $\lambda\Pi$ -calculus modulo rewriting [Cousineau and Dowek, 2007]
 - LF (= λ -calculus + dependent types) + rewrite rules
 - Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]
- Dedukti = **middleware** to exchange proofs to/from/inside Dedukti

Interoperability between proof systems

- The $\lambda\Pi$ -calculus modulo rewriting [Cousineau and Dowek, 2007]
 - LF (= λ -calculus + dependent types) + rewrite rules
 - Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]
- Dedukti = **middleware** to exchange proofs to/from/inside Dedukti
- **Theory morphisms** = translation template between theories
 - Defined for LF [Harper et al, 1994]
 - Extended to Dedukti [Felicissimo, 2022]

Interoperability between proof systems

- The $\lambda\Pi$ -calculus modulo rewriting [Cousineau and Dowek, 2007]
 - LF (= λ -calculus + dependent types) + rewrite rules
 - Implemented in Dedukti [Saillard, 2015, Assaf et al, 2016]
- Dedukti = **middleware** to exchange proofs to/from/inside Dedukti
- **Theory morphisms** = translation template between theories
 - Defined for LF [Harper et al, 1994]
 - Extended to Dedukti [Felicissimo, 2022]

Goal: apply theory morphisms to translate between Dedukti theories

The $\lambda\Pi$ -calculus modulo rewriting

■ Syntax

Objects

$$M, N ::= c \mid x \mid \lambda x : A. M \mid M N$$

Types

$$A, B ::= a \mid \Pi x : A. B \mid \lambda x : A. B \mid A M$$

Kinds

$$K ::= \text{Type} \mid \Pi x : A. K$$

Terms

$$t, u ::= M \mid A \mid K \mid \text{Kind}$$

Theories

$$\mathbb{T} ::= \emptyset \mid \mathbb{T}, c : A \mid \mathbb{T}, a : K \mid \mathbb{T}, M \hookrightarrow N \mid \mathbb{T}, A \hookrightarrow B$$

The $\lambda\Pi$ -calculus modulo rewriting

■ Syntax

Objects $M, N ::= c \mid x \mid \lambda x : A. M \mid M N$

Types $A, B ::= a \mid \Pi x : A. B \mid \lambda x : A. B \mid A M$

Kinds $K ::= \text{Type} \mid \Pi x : A. K$

Terms $t, u ::= M \mid A \mid K \mid \text{Kind}$

Theories $\mathbb{T} ::= \emptyset \mid \mathbb{T}, c : A \mid \mathbb{T}, a : K \mid \mathbb{T}, M \hookrightarrow N \mid \mathbb{T}, A \hookrightarrow B$

■ Terms considered modulo the **conversion** $\equiv_{\beta\mathcal{R}}$

- Generated by β -reduction and rewrite rules
- Reflexive, symmetric and transitive

Outline

Theory Morphisms

Case study: Sort-Erasure Translations

Implementation

Conclusion

Translation

- Principle: **represent** the theory \mathbb{S} inside the theory \mathbb{T}

Translation

- Principle: **represent** the theory \mathbb{S} inside the theory \mathbb{T}

- Translation μ

$\mu(x)$	$=$	x	$\mu(\lambda x : A. M)$	$=$	$\lambda x : \mu(A). \mu(M)$
$\mu(c)$	$=$	μ_c (parameter)	$\mu(\lambda x : A. B)$	$=$	$\lambda x : \mu(A). \mu(B)$
$\mu(a)$	$=$	μ_a (parameter)	$\mu(\Pi x : A. B)$	$=$	$\Pi x : \mu(A). \mu(B)$
$\mu(M N)$	$=$	$\mu(M) \mu(N)$	$\mu(\Pi x : A. K)$	$=$	$\Pi x : \mu(A). \mu(K)$
$\mu(A M)$	$=$	$\mu(A) \mu(M)$	$\mu(\text{Kind})$	$=$	Kind
$\mu(\text{Type})$	$=$	Type			

Definition

■ In LF

μ is a **theory morphism** from \mathbb{S} to \mathbb{T} when

1. for every $c : A \in \mathbb{S}$, there exists a term μ_c such that $\vdash_{\mathbb{T}} \mu_c : \mu(A)$
2. for every $a : K \in \mathbb{S}$, there exists a term μ_a such that $\vdash_{\mathbb{T}} \mu_a : \mu(K)$

Definition

■ In LF

μ is a **theory morphism** from \mathbb{S} to \mathbb{T} when

1. for every $c : A \in \mathbb{S}$, there exists a term μ_c such that $\vdash_{\mathbb{T}} \mu_c : \mu(A)$
2. for every $a : K \in \mathbb{S}$, there exists a term μ_a such that $\vdash_{\mathbb{T}} \mu_a : \mu(K)$

■ In the $\lambda\pi$ -calculus modulo rewriting

Additionally, for every $\ell \hookrightarrow r \in \mathbb{S}$, we require in \mathbb{T}

- ✗ The rewrite rule $\mu(\ell) \hookrightarrow \mu(r)$
- ✗ The rewriting $\mu(\ell) \hookrightarrow_{\beta\mathcal{R}}^* \mu(r)$
- ✓ The conversion $\mu(\ell) \equiv_{\beta\mathcal{R}} \mu(r)$

Results

- **Convertibility is preserved** by theory morphisms

1. If $A \equiv_{\beta\mathcal{R}} B$ in \mathbb{S} then $\mu(A) \equiv_{\beta\mathcal{R}} \mu(B)$ in \mathbb{T}
2. If $K \equiv_{\beta\mathcal{R}} K'$ in \mathbb{S} then $\mu(K) \equiv_{\beta\mathcal{R}} \mu(K')$ in \mathbb{T}

Results

■ Convertibility is preserved by theory morphisms

1. If $A \equiv_{\beta\mathcal{R}} B$ in \mathbb{S} then $\mu(A) \equiv_{\beta\mathcal{R}} \mu(B)$ in \mathbb{T}
2. If $K \equiv_{\beta\mathcal{R}} K'$ in \mathbb{S} then $\mu(K) \equiv_{\beta\mathcal{R}} \mu(K')$ in \mathbb{T}

■ Preservation theorem

1. If $\Gamma \vdash_{\mathbb{S}} M : A$ then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(M) : \mu(A)$
2. If $\Gamma \vdash_{\mathbb{S}} A : K$ then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(A) : \mu(K)$
3. If $\Gamma \vdash_{\mathbb{S}} K : \text{Kind}$ then $\mu(\Gamma) \vdash_{\mathbb{T}} \mu(K) : \text{Kind}$

Outline

Theory Morphisms

Case study: Sort-Erasure Translations

Implementation

Conclusion

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

$Set : \text{Type}$

$El : Set \rightarrow \text{Type}$

$Prop : \text{Type}$

$Prf : Prop \rightarrow \text{Type}$

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

$Set : \text{Type}$

$El : Set \rightarrow \text{Type}$

$Prop : \text{Type}$

$Prf : Prop \rightarrow \text{Type}$

$\Rightarrow : Prop \rightarrow Prop \rightarrow Prop$

$Prf (p \Rightarrow q) \hookrightarrow Prf p \rightarrow Prf q$

Hard-Sorted logic HFOL

Terms are sorted with the typing relation of the framework (Church encoding)

$Set : \text{Type}$

$El : Set \rightarrow \text{Type}$

$Prop : \text{Type}$

$Prf : Prop \rightarrow \text{Type}$

$\Rightarrow : Prop \rightarrow Prop \rightarrow Prop$

$Prf (p \Rightarrow q) \hookrightarrow Prf p \rightarrow Prf q$

$\forall : \prod a : Set. (El a \rightarrow Prop) \rightarrow Prop$

$\text{all}_i : \prod a : Set. \prod p : El a \rightarrow Prop. (\prod x : El a. Prf (p x)) \rightarrow Prf (\forall a p)$

$\text{all}_e : \prod a : Set. \prod p : El a \rightarrow Prop. Prf (\forall a p) \rightarrow \prod x : El a. Prf (p x)$

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

$tm : \text{Type}$ $Set : \text{Type}$ $Prop : \text{Type}$ $Prf : Prop \rightarrow \text{Type}$ $\# : tm \rightarrow Set \rightarrow \text{Type}$

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

$tm : \text{Type}$ $Set : \text{Type}$ $Prop : \text{Type}$ $Prf : Prop \rightarrow \text{Type}$ $\# : tm \rightarrow Set \rightarrow \text{Type}$

$\Rightarrow : Prop \rightarrow Prop \rightarrow Prop$

$Prf (p \Rightarrow q) \hookrightarrow Prf p \rightarrow Prf q$

Soft-Sorted logic SFOL

Terms are sorted with an external relation (Curry encoding)

$tm : \text{Type}$ $Set : \text{Type}$ $Prop : \text{Type}$ $Prf : Prop \rightarrow \text{Type}$ $\# : tm \rightarrow Set \rightarrow \text{Type}$

$\Rightarrow : Prop \rightarrow Prop \rightarrow Prop$

$Prf (p \Rightarrow q) \hookrightarrow Prf p \rightarrow Prf q$

$\forall : \Pi a : Set. (\Pi x : tm. x \# a \rightarrow Prop) \rightarrow Prop$

$Prf (\forall a p) \hookrightarrow \Pi x : tm. \Pi h : x \# a. Prf (p \times h)$

From HFOL to SFOL

- **Intuition:** erasing the sorting information and recovering it later

From HFOL to SFOL

- **Intuition:** erasing the sorting information and recovering it later
- **Problem:** we need the sorting information for $\mu(\text{all}_e)$

From HFOL to SFOL

- **Intuition:** erasing the sorting information and recovering it later
- Problem:** we need the sorting information for $\mu(\text{all}_e)$
- Solution:** we use **dependent pairs** to bundle together a term and its sorting information

From HFOL to SFOL

- **Intuition:** erasing the sorting information and recovering it later
- **Problem:** we need the sorting information for $\mu(\text{all}_e)$
- **Solution:** we use **dependent pairs** to bundle together a term and its sorting information
- Theory morphism:

$$\mu(EI) = \lambda a : \text{Set. pair } a$$

$$\mu(\forall) = \lambda a : \text{Set. } \lambda p : \text{pair } a \rightarrow \text{Prop. } \forall a (\lambda x. \lambda h. p (\text{mk_pair } a x h))$$

From HFOL to SFOL

- **Intuition:** erasing the sorting information and recovering it later
Problem: we need the sorting information for $\mu(\text{all}_e)$
Solution: we use **dependent pairs** to bundle together a term and its sorting information

- Theory morphism:

$$\mu(EI) = \lambda a : \text{Set. pair } a$$

$$\mu(\forall) = \lambda a : \text{Set. } \lambda p : \text{pair } a \rightarrow \text{Prop. } \forall a (\lambda x. \lambda h. p (\text{mk_pair } a x h))$$

- $\mu(\Rightarrow) = \Rightarrow$ and its rewrite rule is trivially preserved

From HFOL to SFOL

- **Intuition:** erasing the sorting information and recovering it later
Problem: we need the sorting information for $\mu(\text{all}_e)$
Solution: we use **dependent pairs** to bundle together a term and its sorting information

- Theory morphism:

$$\mu(EI) = \lambda a : \text{Set. pair } a$$

$$\mu(\forall) = \lambda a : \text{Set. } \lambda p : \text{pair } a \rightarrow \text{Prop. } \forall a (\lambda x. \lambda h. p (\text{mk_pair } a x h))$$

- $\mu(\Rightarrow) = \Rightarrow$ and its rewrite rule is trivially preserved
- **Remark:** we cannot define the morphism if \forall is defined with a rewrite rule in HFOL

Unsorted logic UFOL

All terms have the generic sort tm

Unsorted logic UFOL

All terms have the generic sort tm

 $tm : \text{Type}$ $Prop : \text{Type}$ $Prf : Prop \rightarrow \text{Type}$

Unsorted logic UFOL

All terms have the generic sort tm

 $tm : \text{Type}$ $Prop : \text{Type}$ $Prf : Prop \rightarrow \text{Type}$ $\Rightarrow : Prop \rightarrow Prop \rightarrow Prop$ $Prf (p \Rightarrow q) \hookrightarrow Prf p \rightarrow Prf q$

Unsorted logic UFOL

All terms have the generic sort tm

 $tm : \text{Type}$ $Prop : \text{Type}$ $Prf : Prop \rightarrow \text{Type}$ $\Rightarrow : Prop \rightarrow Prop \rightarrow Prop$ $Prf (p \Rightarrow q) \hookrightarrow Prf p \rightarrow Prf q$ $\forall : (tm \rightarrow Prop) \rightarrow Prop$ $Prf (\forall p) \hookrightarrow \Pi x : tm. Prf (p x)$

From SFOL to UFOL

- **Intuition:** transforming sorts into sort predicates

$$\mu(\text{Set}) = \text{tm} \rightarrow \text{Prop}$$

$$\mu(\#) = \lambda x : \text{tm}. \lambda a : \text{tm} \rightarrow \text{Prop}. \text{Prf} (a x)$$

From SFOL to UFOL

- **Intuition:** transforming sorts into sort predicates

$$\mu(\text{Set}) = \text{tm} \rightarrow \text{Prop}$$

$$\mu(\#) = \lambda x : \text{tm}. \lambda a : \text{tm} \rightarrow \text{Prop}. \text{Prf } (a x)$$

- **Problem:** we need a proof of the sort predicate

$$\mu(\forall) = \lambda a : \text{tm} \rightarrow \text{Prop}. \lambda p : (\Pi x : \text{tm}. \text{Prf } (a x) \rightarrow \text{Prop}). \forall (\lambda x : \text{tm}. (a x) \Rightarrow (p x \text{ ?}))$$

From SFOL to UFOL

- **Intuition:** transforming sorts into sort predicates

$$\mu(Set) = tm \rightarrow Prop$$

$$\mu(\#) = \lambda x : tm. \lambda a : tm \rightarrow Prop. Prf (a x)$$

- **Problem:** we need a proof of the sort predicate

$$\mu(\forall) = \lambda a : tm \rightarrow Prop. \lambda p : (\Pi x : tm. Prf (a x) \rightarrow Prop). \forall (\lambda x : tm. (a x) \Rightarrow (p x ?))$$

- **Solution:** we use a **dependent implication**

$$Prf (p \Rightarrow_d q) \hookrightarrow \Pi h : Prf p. Prf (q h)$$

$$\mu(\forall) = \lambda a : tm \rightarrow Prop. \lambda p : (\Pi x : tm. Prf (a x) \rightarrow Prop). \forall (\lambda x : tm. (a x) \Rightarrow_d (\lambda h. p x h))$$

From SFOL to UFOL

- **Intuition:** transforming sorts into sort predicates

$$\mu(\text{Set}) = \text{tm} \rightarrow \text{Prop}$$

$$\mu(\#) = \lambda x : \text{tm}. \lambda a : \text{tm} \rightarrow \text{Prop}. \text{Prf } (a x)$$

- **Problem:** we need a proof of the sort predicate

$$\mu(\forall) = \lambda a : \text{tm} \rightarrow \text{Prop}. \lambda p : (\Pi x : \text{tm}. \text{Prf } (a x) \rightarrow \text{Prop}). \forall (\lambda x : \text{tm}. (a x) \Rightarrow (p x \text{ ?}))$$

- **Solution:** we use a **dependent implication**

$$\text{Prf } (p \Rightarrow_d q) \hookrightarrow \Pi h : \text{Prf } p. \text{Prf } (q h)$$

$$\mu(\forall) = \lambda a : \text{tm} \rightarrow \text{Prop}. \lambda p : (\Pi x : \text{tm}. \text{Prf } (a x) \rightarrow \text{Prop}). \forall (\lambda x : \text{tm}. (a x) \Rightarrow_d (\lambda h. p x h))$$

- We have $\mu(\text{Prf } (\forall a p)) \equiv_{\beta\mathcal{R}} \mu(\Pi x : \text{tm}. \Pi h : x \# a. \text{Prf } (p x h))$ in UFOL

Outline

Theory Morphisms

Case study: Sort-Erasure Translations

Implementation

Conclusion

Implementation in Dedukti

- The user specifies the source file, the target file and the name of the output

Implementation in Dedukti

- The user specifies the source file, the target file and the name of the output
- The output file is generated and the user must **fill in the parameters**
 - The conditions on constants are checked automatically
 - The conditions on rewrite rules have to be checked by the user

Implementation in Dedukti

- The user specifies the source file, the target file and the name of the output
- The output file is generated and the user must **fill in the parameters**
 - The conditions on constants are checked automatically
 - The conditions on rewrite rules have to be checked by the user
- All the **results and proofs** of the source theory are now expressed in the target theory

In practice

- Available online

<https://github.com/Deducteam/TranslationTemplates>

In practice

- Available online

<https://github.com/Deducteam/TranslationTemplates>

- All the examples have been implemented in Dedukti

Outline

Theory Morphisms

Case study: Sort-Erasure Translations

Implementation

Conclusion

Takeaway message

- **Theory morphisms** for the $\lambda\Pi$ -calculus modulo rewriting
 - Implemented in Dedukti to easily **transfer proofs** between theories
 - Rewrite rules in the target theory: simplify the proof obligations
 - Rewrite rules in the source theory: create additional constraints

Takeaway message

- **Theory morphisms** for the $\lambda\Pi$ -calculus modulo rewriting
 - Implemented in Dedukti to easily **transfer proofs** between theories
 - Rewrite rules in the target theory: simplify the proof obligations
 - Rewrite rules in the source theory: create additional constraints
- Technical features (dependent pairs and dependent implications) may be necessary

Takeaway message

- **Theory morphisms** for the $\lambda\Pi$ -calculus modulo rewriting
 - Implemented in Dedukti to easily **transfer proofs** between theories
 - Rewrite rules in the target theory: simplify the proof obligations
 - Rewrite rules in the source theory: create additional constraints
- Technical features (dependent pairs and dependent implications) may be necessary
- Potential application: translation between the encodings of **B** and **TLA+** in Dedukti

Takeaway message

- **Theory morphisms** for the $\lambda\Pi$ -calculus modulo rewriting
 - Implemented in Dedukti to easily **transfer proofs** between theories
 - Rewrite rules in the target theory: simplify the proof obligations
 - Rewrite rules in the source theory: create additional constraints
- Technical features (dependent pairs and dependent implications) may be necessary
- Potential application: translation between the encodings of **B** and **TLA+** in Dedukti

Thank you!