Kuroda's Translation for Higher-Order Logic

Logimics Meeting

Thomas Traversié

Supervisors: Marc Aiguier (MICS), Gilles Dowek (LMF), Olivier Hermant (CRI)

June 14th 2024

- For L.E.J. Brouwer, proofs must be constructive
 - A proof of $\exists x.A$ must give a witness x
 - A proof of $A \lor B$ must either prove A or prove B
- Intuitionism: reject the principle of excluded middle $A \vee \neg A$
- For David Hilbert, the principle of excluded middle is fundamental
- "Taking the principle of excluded middle from the mathematician would be the same, say, as proscribing the telescope to the astronomer or to the boxer the use of his fists"

Intuitionistic logic

Intuitionistic logic = classical logic without the principle of excluded middle $A \lor \neg A$

Drawbacks:

- No double-negation elimination $\neg \neg A \Rightarrow A$
- No proof by contradiction

 $\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A}$

Advantage: **constructive** proofs

• What is the link between provability in classical logic and provability in intuitionistic logic?

Intuition:

 $\vdash_i A \lor \neg A \quad \mathsf{X}$ $\vdash_i \neg \neg (A \lor \neg A) \quad \checkmark$

What about first-order logic?

Double-negation translations (1)

Translations inserting double negations inside formulas

- Kolmogorov [1925]
- Gödel [1933] and Gentzen [1936]
- Kuroda [1951]

• Kuroda's translation:
$$A^{Ku} := \neg \neg A_{Ku}$$
 and

$$\begin{array}{ll} (A \Rightarrow B)_{Ku} \coloneqq A_{Ku} \Rightarrow B_{Ku} & (\neg A)_{Ku} \coloneqq \neg A_{Ku} & P_{Ku} \coloneqq P \text{ if } P \text{ atomic} \\ (A \land B)_{Ku} \coloneqq A_{Ku} \land B_{Ku} & \top_{Ku} \coloneqq \top & (\forall x.A)_{Ku} \coloneqq \forall x.\neg \neg A_{Ku} \\ (A \lor B)_{Ku} \coloneqq A_{Ku} \lor B_{Ku} & \bot_{Ku} \coloneqq \bot & (\exists x.A)_{Ku} \coloneqq \exists x.A_{Ku} \end{array}$$

Double-negation translations (2)

• Translations $A \mapsto A^t$ that satisfy:

Property (1) if $\Gamma \vdash_c A$ then $\Gamma^t \vdash_i A^t$ **Property (2)** $\vdash_c A^t \Leftrightarrow A$

- Using Property (2):
 - if $\Gamma^t \vdash_i A^t$ then $\Gamma \vdash_c A$
- What about higher-order logic?

It is possible to quantify over propositions in higher-order logic

Syntax of simple type theory

t, u ::=	X	Variables
	<i>c</i>	Constants
	tu	Applications
	$\lambda x.t$	λ -abstractions

- Computation
 - β -reduction: $(\lambda x.t)u \hookrightarrow t[x \leftarrow u]$
 - Congruence \equiv_{β}

$$\frac{\Gamma \vdash A \qquad x \notin FV(\Gamma)}{\Gamma \vdash \forall x.A} \text{ All-I} \qquad \frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A[x \leftarrow t]} \text{ All-E}$$

$$\frac{\Gamma \vdash A[x \leftarrow t]}{\Gamma \vdash \exists x.A} \text{ Ex-I} \qquad \frac{\Gamma \vdash \exists x.A \qquad \Gamma, A \vdash C \qquad x \notin FV(\Gamma, C)}{\Gamma \vdash C} \text{ Ex-E}$$

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \text{ Bot-E} \qquad \frac{\Gamma \vdash \top}{\Gamma \vdash T} \text{ Top-I}$$

$$\frac{\Gamma \vdash A \qquad A \equiv_{\beta} B}{\Gamma \vdash B} \text{ Conv} \qquad \frac{\Gamma \vdash A \lor \neg A}{\Gamma \vdash A \lor \neg A} \text{ PEM}$$

Higher-order logic with equality

Introduction and elimination rules for the new symbol =

$$\frac{\Gamma \vdash A[x \leftarrow u] \quad \Gamma \vdash u = v}{\Gamma \vdash A[x \leftarrow v]} \text{ Eq-E}$$

Functional extensionality: two point-wise equal functions are equal

$$\frac{\Gamma \vdash fx = gx \qquad x \notin FV(\Gamma, f, g)}{\Gamma \vdash f = g}$$
 FunExt

Propositional extensionality: two equivalent propositions are equal

$$\frac{\Gamma \vdash A \Rightarrow B \qquad \Gamma \vdash B \Rightarrow A}{\Gamma \vdash A = B} \text{PropExt}$$

Higher-order logic without equality

 $\Gamma \vdash_i A$ and $\Gamma \vdash_c A$

Higher-order logic with equality

 $\Gamma \vdash_i^* A \text{ and } \Gamma \vdash_c^* A \text{ with } * \in \{\mathfrak{e}, \mathfrak{ep}, \mathfrak{ef}, \mathfrak{efp}\}$

 $\mathfrak e$ for Eq-I and Eq-E $\mathfrak p$ for PropExt $\mathfrak f$ for FunExt

Investigated by Brown and Rizkallah [2014]

Kolmogorov's and Gödel-Gentzen's translations cannot be extended to higher-order logic

- Kuroda's translation can be extended, but
 - they did not prove Property (2)
 - they proved that Property (1) fails in the presence of functional extensionality

- We prove that functional extensionality and propositional extensionality are sufficient to derive Property (2)
- We give a condition under which Property (1) holds with functional extensionality

Kuroda's translation for higher-order logic

Inserting double negations in front of formulas

 $A^{Ku} := \neg \neg A_{Ku}$

Inserting double negations after universal quantifiers

 A_{Ku} is inductively defined by:

• We do not have
$$(A[z \leftarrow w])^{\kappa_u} = A^{\kappa_u}[z \leftarrow w]$$
 anymore

Substitution

$$(A[z \leftarrow w])^{Ku} = A^{Ku}[z \leftarrow w_{Ku}]$$

if
$$A \equiv_{\beta} B$$
 then $A^{Ku} \equiv_{\beta} B^{Ku}$

- In higher-order logic:
 - 1. If $\Gamma \vdash_c A$ then $\Gamma^{Ku} \vdash_i A^{Ku}$
 - 2. For $* \in \{e, ep\}$, if $\Gamma \vdash_c^* A$ then $\Gamma^{Ku} \vdash_i^* A^{Ku}$
 - 3. For $* \in {\mathfrak{ef}, \mathfrak{efp}}$, if $\Gamma \vdash_c^* A$ then $\Delta_{eq}, \Gamma^{Ku} \vdash_i^* A^{Ku}$
- Double-negation elimination on equality Δ_{eq} : $\forall x \forall y. \neg \neg (x = y) \Rightarrow x = y$

- Not necessarily true
 - P of type o (proposition) and C constant of type $o \rightarrow o$
 - We have $\vdash_c (CP)^{Ku} \Leftrightarrow \neg \neg (CP_{Ku}) \Leftrightarrow CP_{Ku}$
 - We cannot derive $\vdash_c (CP)^{Ku} \Leftrightarrow CP$
- We assume functional extensionality and propositional extensionality

$$\vdash_c^{\mathfrak{efp}} A^{Ku} \Leftrightarrow A$$

Using Property (2)

1. If $\Gamma^{Ku} \vdash_i A^{Ku}$ then $\Gamma \vdash_c^{\mathfrak{efp}} A$

2. For
$$* \in {e, ep}$$
, if $\Gamma^{Ku} \vdash_i^* A^{Ku}$ then $\Gamma \vdash_c^{efp} A$

3. For
$$* \in {ef, efp}$$
, if $\Delta_{eq}, \Gamma^{Ku} \vdash_i^* A^{Ku}$ then $\Gamma \vdash_c^{efp} A$

- Kuroda's translation extends to higher-order logic
- In the absence of functional extensionality, Property (1) holds [Brown, Rizkallah, 2014]
- In the presence of functional extensionality, Property (1) holds when assuming the double-negation elimination on equality
- Property (2) holds when assuming both functional extensionality and propositional extensionality