Kuroda's Translation for the $\lambda\Pi$ -Calculus Modulo Theory and Dedukti

LEMTP 2024

Thomas Traversié

Interoperability between proof systems

Many different proof systems

hol-light

- Need for interoperability
 - \hookrightarrow Re-usability, re-checking, preservation of databases
- The λ Π-calculus modulo theory [Cousineau and Dowek, 2007]
 - λ -calculus extended with dependent types and rewrite rules
 - Logical framework used for proof exchange
 - Implemented in the Dedukti proof language

Classical logic and intuitionistic logic

- Classical proof systems: HOL LIGHT, MIZAR Intuitionistic proof systems: CoQ, AGDA
- Intuitionistic logic = classical logic without the principle of the excluded middle $A \vee \neg A$
- Drawbacks:
 - No double-negation elimination $\neg \neg A \Rightarrow A$
 - No proof by contradiction

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A}$$

Advantage: constructive proofs

Embedding classical logic into intuitionistic logic

- Translations $A \mapsto A^*$ [Kolmogorov, 1925, Gödel, 1933, Gentzen, 1936, Kuroda, 1951]
 - Insert double negations inside formulas
 - In first-order logic,

$$\underbrace{\Gamma \vdash_{c} A}_{\text{classical logic}} \text{ iff } \underbrace{\Gamma^* \vdash_{i} A^*}_{\text{intuitionistic logic}}$$

Intuition:

$$\vdash_{i} A \lor \neg A \quad X$$
$$\vdash_{i} \neg \neg (A \lor \neg A) \quad \checkmark$$

■ Kuroda's translation can be extended to higher-order logic [Brown and Rizkallah, 2014]

Contribution

- lacktriangle We characterize theories encoded in higher-order logic in the $\lambda\Pi$ -calculus modulo theory
- We extend Kuroda's translation to the $\lambda\Pi$ -calculus modulo theory
- We **implement** it for Dedukti proofs

Outline

Higher-order logic in the $\lambda\Pi\text{-calculus}$ modulo theory

Kuroda's Translation for the $\lambda\Pi$ -calculus modulo theory

Implementation for Dedukti proofs

Conclusion

Outline

Higher-order logic in the $\lambda\Pi$ -calculus modulo theory

Kuroda's Translation for the $\lambda\Pi$ -calculus modulo theory

Implementation for Dedukti proofs

Conclusion

The $\lambda\Pi$ -calculus modulo theory

Syntax

Sorts
$$s := TYPE \mid KIND$$

Terms
$$t, u, A, B := c \mid x \mid s \mid \Pi x : A. B \mid \lambda x : A. t \mid t u$$

Signatures
$$\Sigma := \langle \rangle \mid \Sigma, c : A$$

Rewrite systems
$$\mathcal{R} ::= \langle \rangle \mid \mathcal{R}, \ell \hookrightarrow r$$

Contexts
$$\Gamma ::= \langle \rangle \mid \Gamma, x : A$$

$$\Pi x : A. B \text{ written } A \rightarrow B \text{ if } x \text{ not in } B$$

- Theory $\mathcal{T} = (\Sigma, \mathcal{R})$
- **Conversion** $\equiv_{\beta \mathcal{R}}$ generated by β -reduction and \mathcal{R}

Typing rules

$$\frac{\Gamma \vdash A : \mathtt{TYPE} \qquad \Gamma, x : A \vdash B : s \qquad \Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A. \ t : \Pi x : A. \ B} \ [\mathtt{Abs}]$$

$$\frac{\Gamma \vdash t : \Pi x : A. \ B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B[x \mapsto u]} \ [App]$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash B : s}{\Gamma \vdash t : B} \text{ [Conv] } A \equiv_{\beta \mathcal{R}} B$$

Basic encoding

- Notions of proposition and proof [Blanqui et al, 2023]
- Universe of **sorts** Set : TYPE, injection El : Set → TYPE Sort nat : Set, natural number n : El nat
- Universe of **propositions** Prop : TYPE, injection Prf : Prop \rightarrow TYPE Proposition P : Prop, a proof of P is of type Prf P

Encoding connectives and quantifiers

■ Encoding the connectives and quantifiers [Blanqui et al, 2023]

$$\lor: Prop \rightarrow Prop \rightarrow Prop$$
 $∀: \Pi x: Set. (El x \rightarrow Prop) \rightarrow Prop$

- Polymorphic quantifiers \forall and \exists over sorts
- Higher-order encoding
 - Sort of propositions o : Set, with $El \ o \hookrightarrow Prop$
 - Functionality \rightsquigarrow , with El $(x \rightsquigarrow y) \hookrightarrow$ El $x \rightarrow$ El y

Encoding natural deduction rules

$$\frac{\Gamma \vdash P \lor Q \qquad \Gamma, P \vdash R \qquad \Gamma, Q \vdash R}{\Gamma \vdash R} \text{ OR-E}$$

or_e:
$$\Pi p, q : Prop.$$

 $Prf (p \lor q) \rightarrow$
 $\Pi r : Prop.$
 $(Prf p \rightarrow Prf r) \rightarrow$
 $(Prf q \rightarrow Prf r) \rightarrow$
 $Prf r$

Characterizing higher-order logic (1)

■ Signatures Σ^{i}_{HOL} for **intuitionistic** logic and Σ^{c}_{HOL} for **classical** logic

$$\Sigma^{c}_{HOL} = \Sigma^{i}_{HOL}$$
, pem : Πp : $Prop$. $Prf(p \lor \neg p)$

Rewrite system \mathcal{R}_{HOL}

- lacksquare User-defined constants $\Sigma_{\mathcal{T}}$ and rewrite rules $\mathcal{R}_{\mathcal{T}}$
 - We can mix sorts, propositions and proofs

$$c: \Pi P: Prop. \ Prf \ P \rightarrow El \ nat$$

– We must restrict the typed constants $\Sigma_{\mathcal{T}}$

Characterizing higher-order logic (2)

Hierarchy

$$\begin{split} \kappa_1 &\coloneqq \textit{Set} \mid \kappa_1 \to \kappa_1 \\ \kappa_2 &\coloneqq \textit{Prop} \mid \textit{El a} \mid \Pi x : \kappa_i. \; \kappa_2 \; \text{with} \; i \in \{1,2\} \\ \kappa_3 &\coloneqq \textit{Prf} \; p \mid \kappa_3 \to \kappa_3 \mid \Pi x : \kappa_i. \; \kappa_3 \; \text{with} \; i \in \{1,2\} \\ \kappa_4 &\coloneqq \texttt{TYPE} \mid \Pi x : \kappa_i. \; \kappa_4 \; \text{with} \; i \in \{1,2\} \\ \kappa_5 &\coloneqq \texttt{KIND} \end{split}$$

- lacksquare κ_3 represents formulas and inference rules
- Constraint: for every $c : A \in \Sigma_T$, we have $A \in \kappa_i$ for some $i \in [1, 5]$

Theories encoded in higher-order logic

■ Theories **encoded** in higher-order logic $\mathcal{T} = (\Sigma_{HOL}^k \cup \Sigma_{\mathcal{T}}, \mathcal{R}_{HOL} \cup \mathcal{R}_{\mathcal{T}})$ with $k \in \{i, c\}$

■ Example: arithmetic

nat : *Set*

 $0 \hspace{1cm} : \hspace{1cm} \textit{El } \mathsf{nat} \hspace{1cm} x + 0 \hspace{1cm} \hookrightarrow \hspace{1cm} x$

 $\mathsf{succ} \ : \ \mathsf{\mathit{El}} \ \mathsf{nat} \to \mathsf{\mathit{El}} \ \mathsf{nat} \\ \qquad \qquad \mathsf{\mathit{x}} + \mathsf{\mathit{succ}} \ \mathsf{\mathit{y}} \ \hookrightarrow \ \mathsf{\mathit{succ}} \ (\mathsf{\mathit{x}} + \mathsf{\mathit{y}})$

+ : EI nat $\rightarrow EI$ nat $\rightarrow EI$ nat

 $\mathsf{rec} : \mathit{Prf} \ (\forall \ (\mathsf{nat} \leadsto o) \ (\lambda P. \ (P \ 0 \land (\forall \ \mathsf{nat} \ (\lambda n. \ P \ n \Rightarrow P \ (\mathsf{succ} \ n)))) \Rightarrow (\forall \ \mathsf{nat} \ (\lambda n. \ P \ n))))$

Outline

Higher-order logic in the $\lambda\Pi$ -calculus modulo theory

Kuroda's Translation for the $\lambda\Pi$ -calculus modulo theory

Implementation for Dedukti proofs

Conclusion

Kuroda's translation...

- Principle of the translation: inserting double negations in front of formulas and after every universal quantifier
- Challenges in the encoding of higher-order logic in the $\lambda\Pi$ -calculus modulo theory
 - Dependent types
 - Rewrite rules
 - Proofs are terms

...in the $\lambda\Pi$ -calculus modulo theory

 Principle of the proof: the translation of each natural deduction rule is admissible in intuitionistic logic

$$\frac{\Gamma, P \vdash_{c} Q}{\Gamma \vdash_{c} P \Rightarrow Q} \text{ IMP-I} \qquad \frac{\Gamma^{Ku}, P^{Ku} \vdash_{i} Q^{Ku}}{\Gamma^{Ku} \vdash_{i} (P \Rightarrow Q)^{Ku}}$$

■ For each constant $c: A \in \Sigma_{HOL}$ representing a natural deduction rule, we build a **term** c^i of type A^{Ku} in $(\Sigma^i_{HOL}, \mathcal{R}_{HOL})$

Kuroda's translation in the $\lambda\Pi$ -calculus modulo theory (1)

Translation of terms

$$x^{Ku} := x \qquad (\lambda x : A. \ t)^{Ku} := \lambda x : A^{Ku}. \ t^{Ku}$$

$$(t \ u)^{Ku} := t^{Ku} \ u^{Ku} \qquad (\Pi x : A. \ B)^{Ku} := \Pi x : A^{Ku}. \ B^{Ku}$$

$$c^{Ku} := \begin{cases} \lambda p. \ Prf \ (\neg \neg p) & \text{if } c = Prf \\ \lambda x. \ \lambda p. \ \forall \ x \ (\lambda z. \ \neg \neg (p \ z)) & \text{if } c = \forall \\ c^i & \text{if } c \text{ represents a natural deduction rule} \\ c & \text{otherwise} \end{cases}$$

■ Substitution: $(t[z \leftarrow w])^{Ku} = t^{Ku}[z \leftarrow w^{Ku}]$

Kuroda's translation in the $\lambda\Pi$ -calculus modulo theory (2)

Translation of contexts, signatures and rewrite systems

$$\begin{split} &\langle\rangle^{Ku} ::= \langle\rangle \\ &(\Gamma, x : A)^{Ku} := \Gamma^{Ku}, x : A^{Ku} \\ &(\Sigma, c : A)^{Ku} := \Sigma^{Ku}, c : A^{Ku} \\ &(\mathcal{R}, \ell \hookrightarrow r)^{Ku} := \mathcal{R}^{Ku}, \ell^{Ku} \hookrightarrow r^{Ku} \end{split}$$

■ Translation of theory $\mathcal{T} = (\Sigma^c_{HOL} \cup \Sigma_{\mathcal{T}}, \mathcal{R}_{HOL} \cup \mathcal{R}_{\mathcal{T}})$ $\mathcal{T}^{Ku} = (\Sigma^i_{HOL} \cup \Sigma^{Ku}_{\mathcal{T}}, \mathcal{R}_{HOL} \cup \mathcal{R}^{Ku}_{\mathcal{T}})$

■ Conversion: if $A \equiv_{\beta \mathcal{R}} B$ in \mathcal{T} then $A^{Ku} \equiv_{\beta \mathcal{R}} B^{Ku}$ in \mathcal{T}^{Ku}

Embedding classical logic into intuitionistic logic

- Theorem: If $\Gamma \vdash t : A$ in \mathcal{T} then $\Gamma^{Ku} \vdash t^{Ku} : A^{Ku}$ in \mathcal{T}^{Ku}
- Every occurrence of the classical axiom

pem :
$$\Pi p$$
 : $Prop$. $Prf(p \lor \neg p)$

is replaced by the intuitionistic proof term

$$pem^i : \Pi p : Prop. Prf (\neg \neg (p \lor \neg p))$$

Back to the original theory

- Theorem: if $\Gamma^{Ku} \vdash t : A^{Ku}$ in \mathcal{T}^{Ku} then there exists some term t' such that $\Gamma \vdash t' : A$ in \mathcal{T}
- Proof in two steps:
 - From a proof of A^{Ku} , build a proof of A in classical logic
 - From a proof of A that uses $\Sigma^{Ku}_{\mathcal{T}}$ and $\mathcal{R}^{Ku}_{\mathcal{T}}$, build a proof of A that uses $\Sigma_{\mathcal{T}}$ and $\mathcal{R}_{\mathcal{T}}$

Outline

Higher-order logic in the $\lambda\Pi$ -calculus modulo theory

Kuroda's Translation for the $\lambda\Pi$ -calculus modulo theory

Implementation for Dedukti proofs

Conclusion

Construkti

- Dedukti = a **proof language** for the $\lambda\Pi$ -calculus modulo theory
- Construkti = a **tool** that implements Kuroda's translation
 - Takes a Dedukti file in classical logic
 - Outputs a Dedukti file in intuitionistic logic
- Example: Clavius law $\forall A \ (\neg A \Rightarrow A) \Rightarrow A$

In practice

Construkti inserts double negations and replaces the **constants** c:A representing the **classical** natural deduction rules by **intuitionistic proof terms** $c^i:A^{Ku}$

```
pem : p : Prop -> Prf (or p (not p)).
```

Benchmark

- Tested on 100 proofs
 - In propositional, first-order and higher-order logic
 - Provable formulas and admissible inference rules
 - Classical formulas, De Morgan's laws, polymorphic Leibniz equality, arithmetic
 - Using rewrite rules and dependent types
- Tool and benchmark available at

https://github.com/Deducteam/Construkti

Outline

Higher-order logic in the $\lambda\Pi$ -calculus modulo theory

Kuroda's Translation for the $\lambda\Pi$ -calculus modulo theory

Implementation for Dedukti proofs

Conclusion

Takeaway message

- Kuroda's translation extends to theories encoded in higher-order logic in the $\lambda\Pi$ -calculus modulo theory
- It is both:
 - an extension to a logical framework with dependent types and rewrite rules
 - an **encoding** inside a logical framework where proofs are terms
- Tool Construkti = an **implementation** in Dedukti

Perspectives

- Dedukti and Construkti paves the way for proof interoperability
- Future work: apply Construkti on a large database of proofs
- Related work: **constructivisation** [Cauderlier, 2016, Gilbert, 2017]
 - Kuroda: always finds an intuitionistic proof, but modifies the theorem
 - Constructivisation: finds an intuitionistic proof for the *original* theorem, but *may fail*

Thank you for your attention!