Kuroda’s Translation for the Al-Calculus Modulo Theory
and Dedukti

LFMTP 2024

Thomas Traversié

@ []
nic D université @
CentraleSupélec | PARIS-SACLAY

Interoperability between proof systems

m Many different proof systems
4 e\e =
U Agdo @ hol-light

m Need for interoperability
< Re-usability, re-checking, preservation of databases

m The Al-calculus modulo theory [Cousineau and Dowek, 2007]
— A-calculus extended with dependent types and rewrite rules
— Logical framework used for proof exchange
— Implemented in the Dedukti proof language

1/28

Classical logic and intuitionistic logic

m Classical proof systems: HOL LicHT, MIZAR
Intuitionistic proof systems: C0Q, AGDA

= Intuitionistic logic = classical logic without the principle of the excluded middle AV —A

m Drawbacks:
— No double-negation elimination =——A = A
— No proof by contradiction

M-AF L
r-A

m Advantage: constructive proofs

2/28

Embedding classical logic into intuitionistic logic

m Translations A — A* [Kolmogorov, 1925, Gédel, 1933, Gentzen, 1936, Kuroda, 1951]
— Insert double negations inside formulas
— In first-order logic,

M A ff Tk A*

—— ——
classical logic intuitionistic logic
m Intuition:
FiAV-A X

H ==(AV-A)

m Kuroda's translation can be extended to higher-order logic [Brown and Rizkallah, 2014]

3/28

Contribution

m We characterize theories encoded in higher-order logic in the All-calculus modulo theory

m We extend Kuroda's translation to the All-calculus modulo theory

= We implement it for Dedukti proofs

4/28

Outline

Higher-order logic in the All-calculus modulo theory

Kuroda's Translation for the All-calculus modulo theory

Implementation for Dedukti proofs

Conclusion

5/28

Outline

Higher-order logic in the All-calculus modulo theory

6/28

The All-calculus modulo theory

m Syntax
Sorts s u= TYPE | KIND
Terms t,uyABi=c|x|s|NMx:AB|Mx:A t|tu
Signatures Y=]|X,c:A
Rewrite systems Ri={(|R,L—=r
Contexts Fr=O|Mhx:A

Mx : A. B written A — B if x not in B

m Theory 7 = (X, R)

m Conversion =g generated by 3-reduction and R

7/28

Typing rules

= A:TYPE MNx:AFB:s MNx:AFt:B
MN=Xx:A t:MNx:A B

[ABs]

F=t:MNx:A B lFu:A
MNe=twu:Blxw— u

[APP]

=t A lB:s
l=t: B

[Conv] A= B

8/28

Basic encoding

m Notions of proposition and proof [Blanqui et al, 2023]

m Universe of sorts Set : TYPE, injection E/ : Set — TYPE
Sort nat : Set, natural number n: El nat

m Universe of propositions Prop : TYPE, injection Prf : Prop — TYPE
Proposition P : Prop, a proof of P is of type Prf P

9/28

Encoding connectives and quantifiers

m Encoding the connectives and quantifiers [Blanqui et al, 2023]
V : Prop — Prop — Prop

V: Mx : Set. (El x — Prop) — Prop

m Polymorphic quantifiers V and 3 over sorts

m Higher-order encoding
— Sort of propositions o : Set, with E/ o < Prop
— Functionality ~~, with El (x ~y) — El x — El y

10/28

Encoding natural deduction rules

r-PvQ T,PFR T,QFR
MR

ORr-E

ote : Ip,q: Prop.
Prf (pV q) —
Mr : Prop.
(Prf p— Prf r) —
(Prf g — Prf r) —
Prf r

11/28

Characterizing higher-order logic (1)

m Signatures X}, for intuitionistic logic and ¥§,,, for classical logic
Y$00 = Zhor, pem : Tp : Prop. Prf (pV —p)

Rewrite system Ryor

m User-defined constants £ and rewrite rules R+
— We can mix sorts, propositions and proofs

c: NP : Prop. Prf P — El nat

— We must restrict the typed constants ¥+

12/28

Characterizing higher-order logic (2)

m Hierarchy

K1 1= Set | K1 — K1

Ko v= Prop | El a| Nx : k;. ky with i € {1,2}

K3 i= Prf p| k3 = k3 | Mx @ K;. k3 with i € {1,2}
kg o= TYPE | Nx : k;. kg with i € {1,2}

kg = KIND

m k3 represents formulas and inference rules

m Constraint: for every ¢ : A € X7, we have A € k; for some i € [1,5]

13/28

Theories encoded in higher-order logic

m Theories encoded in higher-order logic 7 = (Xf,5, U X7, RuoL U R7) with k € {i,c}

m Example: arithmetic

nat : Set

0 : Elnat x+0 — X

succ : El nat — El nat x+succy < succ (x+y)
+ . El nat — El nat — El nat

rec : Prf (V (nat~ o) (AP. (P OA (VY nat (An. P n=- P (succ n)))) = (¥ nat (An. P n))))

14/28

Outline

Kuroda's Translation for the All-calculus modulo theory

15/28

Kuroda’s translation...

m Principle of the translation: inserting double negations in front of formulas

and after every universal quantifier

m Challenges in the encoding of higher-order logic in the Al-calculus modulo theory

— Dependent types
— Rewrite rules
— Proofs are terms

16/28

..in the All-calculus modulo theory

m Principle of the proof: the translation of each natural deduction rule is admissible in
intuitionistic logic
rPrQ [, phu |-, QK
M- P=Q ke (P= Q)

m For each constant ¢ : A € Lo, representing a natural deduction rule,
we build a term ¢’ of type AX¥ in (Z4,5,, RroL)

17/28

Kuroda’s translation in the All-calculus modulo theory (1)

m Translation of terms

xKu = x (Ax @ A t)KU = \x : ARu Ky
(t u) =Ry (Mx: A B)“ :=Nx : AKv. BK
Ap. Prf (=—p) if c = Prf
cKu . Ax. Ap. ¥V x (Az. ==(p 2)) ifc=V
R if ¢ represents a natural deduction rule
c otherwise

m Substitution: (t[z + w])K¥ = tK¥[z « wkY]

18/28

Kuroda’s translation in the All-calculus modulo theory (2)

m Translation of contexts, signatures and rewrite systems

(5=

(M, x : A)Ku =K x . AKu
(Z,c: A)Ku = Y Ku . AKu
(R, € — r)Ku .= RKu gKu y pKu

m Translation of theory 7 = (X§,o; UX7, RuoL URT)

T = (ThoL U7, RuoL URT)

m Conversion: if A=ggr Bin T then AKu =38R BKu jn TKu

19/28

Embedding classical logic into intuitionistic logic

m Theorem: If TF t: Ain T then [Ku | tKu . AKu jn TKu

m Every occurrence of the classical axiom
pem : MNp : Prop. Prf (pV —p)
is replaced by the intuitionistic proof term

pem’ : Mp : Prop. Prf (——(pV —p))

20/28

Back to the original theory

m Theorem: if TKU | ¢+ AKY in TKY then there exists some term t/ such that TH ¢ : Ain T

m Proof in two steps:
— From a proof of AXY build a proof of A in classical logic
— From a proof of A that uses Zg—“ and R?“, build a proof of A that uses ¥7 and R+

21/28

Outline

Implementation for Dedukti proofs

22/28

Construkti

m Dedukti = a proof language for the All-calculus modulo theory

m Construkti = a tool that implements Kuroda's translation

— Takes a Dedukti file in classical logic
— Outputs a Dedukti file in intuitionistic logic

m Example: Clavius law VA (-A= A) = A

thm clavius Prf (all o (A : E1 o => (imp (imp (not A) A) A)))

thm clavius_i

Prf (not (mot (all o (A : El o =>
not (not (imp (imp (mot A) A) A))))))

23/28

In practice

Construkti inserts double negations and replaces the constants c : A representing the classical
natural deduction rules by intuitionistic proof terms ¢’ : AKY

pem : p : Prop -> Prf (or p (not p)).

thm pem_i : p : Prop -> Prf (mot (not (or p (mot p))))
:= p => neg_i (not (or p (mot p)))
(pNPNP => neg_e (or p (not p)) pNPNP
(or_ir p (not p)
(neg_i p (pP => neg_e
(or p (not p))
pNPNP
(or_il p pP (mot pll))))).

24/28

Benchmark

m Tested on 100 proofs
— In propositional, first-order and higher-order logic
— Provable formulas and admissible inference rules
— Classical formulas, De Morgan's laws, polymorphic Leibniz equality, arithmetic

— Using rewrite rules and dependent types

m Tool and benchmark available at

https://github.com/Deducteam/Construkti

25/28

https://github.com/Deducteam/Construkti

Outline

Conclusion

26/28

Takeaway message

m Kuroda's translation extends to theories encoded in higher-order logic in the All-calculus
modulo theory

m It is both:
— an extension to a logical framework with dependent types and rewrite rules
— an encoding inside a logical framework where proofs are terms

m Tool Construkti = an implementation in Dedukti

27/28

Perspectives

m Dedukti and Construkti paves the way for proof interoperability
m Future work: apply Construkti on a large database of proofs

m Related work: constructivisation [Cauderlier, 2016, Gilbert, 2017]
— Kuroda: always finds an intuitionistic proof, but modifies the theorem
— Constructivisation: finds an intuitionistic proof for the original theorem, but may fail

Thank you for your attention!

28/28

	Higher-order logic in the -calculus modulo theory
	Kuroda's Translation for the -calculus modulo theory
	Implementation for Dedukti proofs
	Conclusion

