Replacing Rewrite Rules by Equational Axioms

in the All-Calculus Modulo Theory
LMF PhD Seminar

Thomas Traversié
joint work with Valentin Blot, Gilles Dowek and Théo Winterhalter

May 28th 2024

¢y

CentraleSupélec

[]
Luniversite
PARIS-SACLAY

A proof of 2 +2 =14

m Axioms

m Deduction

242

X + succ y = succ (x +y)

x+0=x

succ? 0 + succ® 0

succ (succ? 0 + succ 0)
succ? (succ? 0+ 0)
succ? (succ? 0)

4

1/41

Another proof of 2 +2 =4

m For Poincaré, deriving 2 + 2 = 4 is not a meaningful proof, but a simple verification

m Rewrite rules
X + succ y < succ (x + y)

X+ 0= x

m Computation

242 = succ® 0+succ? 0
succ (succ? 0 + succ 0)
succ? (succ?® 0+ 0)
= succ? (succ? 0)
4

so 2 + 2 = 4 using the reflexivity of equality

2/41

Equational axioms or rewrite rules?

Logical systems
with equational axioms

X 4 succ y =succ (x +y)
x+0=x

We prove that 242 =4

Logical systems
with rewrite rules

X + succ y < succ (x + y)
X +0 = x

We compute that (242 =4) = (4 = 4)

3/41

Equational axioms or rewrite rules?

Logical systems
with equational axioms

X 4 succ y =succ (x +y)
x+0=x

We prove that 242 =4

If ¢: list (2+2)
but not necessarily ¢ : list 4

Logical systems
with rewrite rules

X + succ y < succ (x + y)
X +0 = x

We compute that (2+2=4)=(4=14)

If £: list (24 2)
then ¢ : list 4

3/41

Equational axioms or rewrite rules?

Logical systems
with equational axioms

X 4 succ y =succ (x +y)
x+0=x

We prove that 242 =4
If ¢ list (24 2)

then transp e £ : list 4
with e:2+2 =4 and

transp : (2+2 =4) — list (2+2) — list 4

Logical systems
with rewrite rules

X + succ y < succ (x + y)
X +0 = x

We compute that (2+2=4)=(4=14)

If £: list (24 2)
then ¢ : list 4

The All-calculus modulo theory

m The Al-calculus modulo theory [Cousineau and Dowek, 2007]
= A-calculus
+ dependent types
+ rewrite rules

m Logical framework
— Possible to express many theories
— Application: proof interoperability
— Implemented in DEDUKTI [Assaf et al, 2016]

m User-friendly framework
— Deduction — user
— Computation — system

4/41

In this work

m Theoretical motivation: Is a result provable with rewrite rules also provable with axioms?
m Practical motivation: Interoperability between proof systems via DEDUKTI

m Contribution [FoSSaCS 2024]

Rewrite rules can be replaced by equational axioms
in the All-calculus modulo theory with a prelude encoding

5/41

Related work

m Deduction modulo theory = first-order predicate logic 4 rewrite rules
— Rewrite rules can be replaced by axioms [Dowek et al, 2003]

= Translations of extensional type theory into intensional type theory
[Oury, 2005, Winterhalter et al, 2019]

— In extensional type theory, £ = r entails £ = r
— In the Al-calculus modulo theory, £ < r entails £ = r

6/41

Outline

The Al-calculus modulo theory
Syntax and type system
Prelude encoding
Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result

Conclusion

7/41

Qutline

The AlM-calculus modulo theory
Syntax and type system

Prelude encoding

Equality between objects

Equality between types

Translation

Main result

8/41

Outline

The Al-calculus modulo theory

Syntax and type system

Equality

Replacing rewrite rules by equational axioms

Conclusion

9/41

The All-calculus modulo theory

m Syntax
Sorts s = TYPE | KIND
Terms t,uAABi=c|x|s|MNx:A B|Xx:A t|tu
Signatures Y= |X,c:A|X L
Contexts r=_|Mx:A

Mx : A. B written A — B if x not in B

m Careful!
— No identity types
— Finite hierarchy of sorts TYPE : KIND

10/41

Theories of the All-calculus modulo theory

m —gy is generated by S-reduction and the rewrite rules of &

m Theory T defined by a signature ¥ such that:
— for each ¢ — r € ¥, the constants that occur in £ and r belong to ¥
— the relation <5 is confluent
— each rule of X preserves typing

11/41

Typing rules

= A:TYPE MNx:AFB:s
FMNx:A B:s

[PrOD]

M= A:TYPE Mx:AFB:s Mx:AFt:B
N-XAx:A t:Mx:A B

[ABs]

F=t:MNx:A B lFu:A
MNe=twu:Blxw— u]

[APP]

12/41

Convertibility rules

m Conversion rule
r-t: A (TFA:s)=(TFB:s)
l-t:B

[Conv]

m Convertibility rules for building (' uv: A)=(AF v:B)
— Generated by S-reduction and the rewrite rules of ¥
— Closed by context, reflexive, symmetric and transitive

13/41

Outline

The Al-calculus modulo theory

Prelude encoding

Equality

Replacing rewrite rules by equational axioms

Conclusion

14/41

Encoding of the notions of proposition and proof

m Encoding X of the notions of proposition and proof [Blanqui et al, 2023]
< Always used in practice

m Universe of sorts Set with injection E/ : Set — TYPE
— Sort of propositions o, proposition P of type El o

m Universe of propositions El o with injection Prf : El o — TYPE
< A proof of P is of type Prf P

15/41

Rewrite rules of the encoding

m Desired behaviour:
— Functionality E/ (a~> b) — El a— El b
— Implication Prf (a=-b) — Prf a— Prf b
— Universal quantifier Prf (¥ a b) — Nz : El a. Prf (b z)

m Four constants and rewrite rules
El (a ~+4 b) — Nz : El a. El (b 2)

Prf (a =4 b) = Nz : Prf a. Prf (b z)
Prf (V ab) = Nz: El a. Prf (b z)
El (7 a b) = Nz : Prf a. El (b 2)

16/41

Example: natural numbers and lists

nat : Set + : El nat — El nat — E/ nat list : El nat — Set
0: El nat x40 <= x nil : El (list 0)
succ : El nat — El nat X + succ y < succ (x + y)

cons : MNx : El nat. El list x — El nat — El (list (succ x))

concat : MNx, y : El nat. El (list x) — El (list y) — E/ (list (x +y))

m We have ¢ : E/ list (succ 0) F concat (succ 0) 0 ¢ nil : E/ list (succ 0 + 0)

m We have [succ 0+ 0 : El nat] = [succ 0 : E/ nat]

17/41

Example: natural numbers and lists

nat : Set + : El nat — El nat — E/ nat list : El nat — Set
0: El nat x40 <= x nil : El (list 0)
succ : El nat — El nat X + succ y < succ (x + y)

cons : MNx : El nat. El list x — El nat — El (list (succ x))

concat : MNx, y : El nat. El (list x) — El (list y) — E/ (list (x +y))

m We have ¢ : E/ list (succ 0) F concat (succ 0) 0 ¢ nil : E/ list (succ 0 + 0)

m We have [F list (succ 0+ 0) : Set] = [F list (succ 0) : Set]

17/41

Example: natural numbers and lists

nat : Set + : El nat — El nat — E/ nat list : El nat — Set
0: El nat x40 <= x nil : El (list 0)
succ : El nat — El nat X + succ y < succ (x + y)

cons : MNx : El nat. El list x — El nat — El (list (succ x))

concat : MNx, y : El nat. El (list x) — El (list y) — E/ (list (x +y))

m We have ¢ : E/ list (succ 0) F concat (succ 0) 0 ¢ nil : E/ list (succ 0 + 0)

m We have [E/ (list (succ 0+ 0)) : TYPE] = [E/ (list (succ 0)) : TYPE]

17/41

How to replace user-defined rewrite rules by equational axioms?

m In the signature: replace each user-defined rewrite rule ¢ < r by an equational axiom
{=r
m In the derivations: replace each use of the conversion rule
“fromt: Aand A= Bwegett:B"
by the insertion of a transport

“fromt:Aand p: A= B we get transp p t: B”

18/41

Qutline

Syntax and type system

Prelude encoding
Equality

Equality between objects

Equality between types

Translation

Main result

19/41

Equality? Equalities!

m In the All-calculus modulo theory, we have a hierarchy between
— objects u: A
— types A : TYPE

m We need two equalities:
— one for objects
— one for types

20/41

Outline

The Al-calculus modulo theory

Equality

Equality between objects

Replacing rewrite rules by equational axioms

Conclusion

21/41

Equality between objects

m Heterogeneous: to compare objects of different types [McBride, 1999]

m Notation: u a4~pg v with u: A, v: B, A: TYPE and B : TYPE

m Axioms for reflexivity, symmetry, transitivity
refla : Mu : A. u a~4 U

symag:Mu:ATlv:B. uaxgv—veRau

transagc Mu: A Tv:B. Mw: C. u ARV =V BRc W — U ARC W

22/41

Axioms of equality between objects

m In the homogeneous case, it is a Leibniz equality
leibR" : Nu,v:A Np:uax=av.NP:A— Elo. Prf (P u)— Prf (Pv)

eqleiby™ : Mu,v:A Np:uaxav.NP:A— Elo. Nt: Prf (P u).

Prf

IeibA uvp Pt Prf (P v)zPrf (P u) t

m Congruence for application

appPa, a,.B.8, - Mt (Mx: A By). Mty : (Mx: Ay By).
Muy : A1 Mus : As.
t ~ b
— U = U
— B UL B[x—] By [xwp] T2 U2
23/41

Outline

The Al-calculus modulo theory

Equality

Equality between types

Replacing rewrite rules by equational axioms

Conclusion

24/41

Equality between types

= We cannot define an equality between types

< It would have type TYPE — TYPE — TYPE, which is ill-typed

m But we can compare objects of type Set or El o using ~

m Intuition:

Prf a~ Prf b X

El a~ El b X
Mx : El a1. Prf ay =~ Tx : El by. Prf by X
Prf a1 — Prf ay = Prf by — Prf by X

but
but
but
but

ar~bv

ar~ bV
7
7

25/41

Transforming types

m Representing dependent types with ~+4, =4, 7 or ¥V whenever possible

v(Set) = Set v(Prf a) == Prf a v(El a) =El a

Prf (a=q (Ax : Prf a. b)) if v(A) = Prf aand v(B) = Prf b
El (a~>4 (Ax : El a. b)) if v(A)=El aand v(B)=El b
(

v(Mx: A. B) =< Prf (V a (\x: El a. b)) if v(A)=El aand v(B) = Prf b
El (m a (Ax : Prf a. b)) if v(A) = Prf aand v(B) =El b
MNx : v(A). v(B) otherwise

m Using the four rewrite rules of X, we have A = v(A)

26/41

Small types

m Small types: types A such that v(A) is defined and generated by
S=5et|S—=S

Pi="PrfalP=>8|MNz:S5. P
E=Eb|E-S|Nz:S. &

m Set — (Set — Set) v/
Prf a — Prf b convertible with Prf (a =4 (Az : Prf a. b)) v/
Prf a — Set — Prf b X

m In practice, all types are small

27/41

Equality between small types

m Equality (A, B) between small types A et B

K(Prf a1, Prf ap) = ay =~ ap K(El a1, El ay) == a1 = a k(5,5) =Trueif S€S§
K/(Tl — 5, T — 5) = H(Tl, Tz) ifSesS

k(MNz:S. T1,Nz:S5. Ty)=Nz:S5. k(T1, TR)iIfSeS

m Example

k(Mx : Set. Prf P — Prf Q,MNx : Set. Prf R) =Tlx: Set. (P=4Xz:P. Q) =~ R

28/41

Axioms of equality between small types

m Functional extensionality with different domains

funa, aB.8, : MA:(Mx: AL B). M (My @ Ax. By).
H(Al,Az)
—Mx: AL Ny A (x =y)— (A x=hy)
—h~h

m If Ais generated by S, we simply have

funap,.s, @ M :(Mx:A By). Nh:(MNx: A B).
(MNx:A A x=fhx)
—h=h

29/41

Qutline

Syntax and type system

Prelude encoding

Equality between objects
Equality between types

Replacing rewrite rules by equational axioms
Translation

Main result

30/41

Transports

mletlFHt:AandTTH p: k(A B) with A and B small types.

We can build a term transp p t such that:
—[ktranspp t: B
—lkHtransppt gp=a t

m ldea of the translation: insert transports in the terms each time CONV is used

31/41

Outline

The Al-calculus modulo theory

Equality

Replacing rewrite rules by equational axioms

Translation

Conclusion

32/41

Translation

m Translation of terms ¢ < t (“% is a translation of t")

tat U<u tat U<u
X < X cdc (Ax:t.0) < (Ax:t. u) (Mx :t. @) < (Nx:t. u)
tat U<u tat
(to) < (tu) (transpp t) < t

No more conversion rules!

m Translation of contexts

r
() < ((r,x:/_4) a (Mx:A)

33/41

Key results on the translation

m Equal translations

If t and t’ are two translations of t, then t ~ t’

m Switching translations

IfTH%:Aand T+ A’ : TYPE, then there exists ' < t such that T+ ¢ : A’

34/41

Translation of signatures

() <0 (Z.c:A) a (T,c:A)
When £, r : A with free variables x : B

Yy «aY 0 al Fdor B« B AdaA
Y B q

No more rewrite rules!

35/41

Outline

The Al-calculus modulo theory

Equality

Replacing rewrite rules by equational axioms

Main result

Conclusion

36/41

From rewrite rules to axioms

Let a theory 7 = (X, U X7) a theory with prelude encoding.

Suppose that all types are small.

m There exists a signature fT < X7 such that 7% = (X, U X, U fr) is a theory
— X pre remains unchanged
— X ¢q is the signature defining the equalities

m For every A= B in T with A and B small types, there exists some p - (A, B) in T2

m Forevery THt:Ain T, we have [- Ain T2

37/41

Axiomatized theory 7%

m Y7 is a fully axiomatized user-defined signature
< The only rewrite rules in 72 are the 4 of the prelude encoding

m Conservativity: T is conservative over T

m Relative consistency: if 72 is consistent then 7 is also consistent

38/41

Qutline

Syntax and type system

Prelude encoding

Equality between objects

Equality between types

Translation
Main result

Conclusion

39/41

The All-calculus modulo theory

m Logical framework
— Theories can be defined by users using typed constants and rewrite rules
— Many theories can be expressed
— Examples: Predicate Logic, Calculus of Constructions

= Minimal logical framework
— Finite hierarchy of sorts and no identity types
— Heterogeneous equality between objects
— Difficult to define an equality between types

40/41

Replacing rewrite rules by equational axioms

m Considered theories
— Prelude encoding
— Small types
— In practice, always the case

m User-defined rewrite rules can be replaced by equational axioms

m Application: interoperability between proof systems via DEDUKTI

41/41

	The -calculus modulo theory
	Syntax and type system
	Prelude encoding

	Equality
	Equality between objects
	Equality between types

	Replacing rewrite rules by equational axioms
	Translation
	Main result

	Conclusion

