From Rewrite Rules to Axioms in the $\lambda \Pi$-Calculus Modulo Theory

FoSSaCS 2024

Thomas Traversié
joint work with Valentin Blot, Gilles Dowek and Théo Winterhalter

Equational axioms or rewrite rules?

- For Poincaré, deriving $2+2=4$ is not a meaningful proof, but a simple verification
- Two families of logical systems

$$
\begin{aligned}
& \text { With equational axioms } \\
& \begin{array}{l}
x+\operatorname{succ} y=\operatorname{succ}(x+y) \\
x+0=x
\end{array}
\end{aligned}
$$

We prove that $2+2=4$

With rewrite rules

$$
\begin{gathered}
x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y) \\
x+0 \hookrightarrow x
\end{gathered}
$$

We compute that $(2+2=4) \equiv(4=4)$

Equational axioms or rewrite rules?

- For Poincaré, deriving $2+2=4$ is not a meaningful proof, but a simple verification
- Two families of logical systems

$$
\begin{aligned}
& \text { With equational axioms } \\
& \begin{array}{c}
x+\operatorname{succ} y=\operatorname{succ}(x+y) \\
x+0=x
\end{array}
\end{aligned}
$$

We prove that $2+2=4$

$$
\text { If } \ell: \text { list }(2+2)
$$

but not necessarily ℓ : list 4

With rewrite rules

$$
\begin{gathered}
x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y) \\
x+0 \hookrightarrow x
\end{gathered}
$$

We compute that $(2+2=4) \equiv(4=4)$

$$
\begin{gathered}
\text { If } \ell: \text { list }(2+2) \\
\text { then } \ell: \text { list } 4
\end{gathered}
$$

The $\lambda \Pi$-calculus modulo theory

■ The $\lambda \Pi$-calculus modulo theory [Cousineau and Dowek, 2007]
$-\lambda$-calculus + dependent types + rewrite rules

- Implemented in Dedukti [Assaf et al, 2016]

■ Logical framework

- Possible to express many theories
- Application: proof interoperability via DEDUKTI

■ User-friendly framework

- Deduction \rightarrow user
- Computation \rightarrow system

In this paper

- Theoretical motivation: Is a result provable with rewrite rules also provable with axioms?
- Practical motivation: Interoperability between proof systems via DEDUKTI
- Contribution:

Rewrite rules can be replaced by equational axioms in the $\lambda \Pi$-calculus modulo theory with a prelude encoding

Related work

- Deduction modulo theory $=$ first-order predicate logic + rewrite rules
\hookrightarrow Rewrite rules can be replaced by axioms [Dowek et al, 2003]
- Translations of extensional type theory into intensional type theory [Oury, 2005, Winterhalter et al, 2019]

Outline

1. The $\lambda \Pi$-calculus modulo theory
2. Equality in the $\lambda \Pi$-calculus modulo theory
3. Replacement of user-defined rewrite rules by equational axioms

The $\lambda \Pi$-calculus modulo theory

The $\lambda \Pi$-calculus modulo theory

- Syntax

Sorts	$s::=$ TYPE \mid KIND
Terms	$t, u, A, B::=c\|x\| s\|\Pi x: A . B\| \lambda x: A . t \mid t u$
Signatures	$\Sigma::=\langle \rangle\|\Sigma, c: A\| \Sigma, \ell \hookrightarrow r$

$\Pi x: A$. B written $A \rightarrow B$ if x not in B

- Theory \mathcal{T} defined by a well-formed signature Σ
- Carefu!
- No identity types
- Finite hierarchy of sorts TYPE : KIND

Type system

- Typing rules for dependent λ-calculus
- Conversion rule

$$
\frac{\Gamma \vdash t: A \quad(\Gamma \vdash A: s) \equiv(\Gamma \vdash B: s)}{\Gamma \vdash t: B}[\mathrm{CoNv}]
$$

- Convertibility rules for building $(\ulcorner\vdash u: A) \equiv(\Delta \vdash v: B)$
- Generated by β-reduction and the rewrite rules of Σ
- Closed by context, reflexive, symmetric and transitive

Prelude encoding $\Sigma_{\text {pre }}$

■ Encoding of the notions of proposition and proof [Blanqui et al, 2023]
\hookrightarrow Always used in practice

■ Universe of sorts Set with injection El : Set \rightarrow TYPE
\hookrightarrow Sort of propositions o, proposition P of type El o

- Universe of propositions El o with injection Prf: El o \rightarrow TYPE
\hookrightarrow A proof of P is of type $\operatorname{Prf} P$
- Arrows and quantifiers

$$
\begin{aligned}
& E l\left(a \rightsquigarrow d_{d} b\right) \hookrightarrow \Pi z: E l \text { a. El }(b z) \\
& \operatorname{Prf}\left(a \Rightarrow_{d} b\right) \hookrightarrow \Pi z: \operatorname{Prf} \text { a. } \operatorname{Prf}(b z)
\end{aligned}
$$

$$
E l(\pi a b) \hookrightarrow \Pi z: \operatorname{Prf} a . E l(b z)
$$

$$
\operatorname{Prf}(\forall a b) \hookrightarrow \Pi z: E l a . \operatorname{Prf}(b z)
$$

Example: natural numbers and lists

```
nat: Set
0 : El nat
succ : \(E l\) nat \(\rightarrow E /\) nat
\(+: E l\) nat \(\rightarrow E /\) nat \(\rightarrow E /\) nat
list : El nat \(\rightarrow\) Set
\(x+0 \hookrightarrow x\)
nil : EI (list 0)
\(x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y)\)
cons : \(\Pi x: E I\) nat. \(E l\) list \(x \rightarrow E /\) nat \(\rightarrow E I(\) list \((\operatorname{succ} x))\)
concat : \(\Pi x, y: E l\) nat. \(E I(\) list \(x) \rightarrow E I(\) list \(y) \rightarrow E I(\) list \((x+y))\)
```

- We have $\ell: E l$ list (succ 0$) \vdash$ concat (succ 0$) 0 \ell$ nil : El list (succ $0+0)$
- We have $[\vdash \operatorname{succ} 0+0: E /$ nat $] \equiv[\vdash$ succ $0: E /$ nat $]$

Example: natural numbers and lists

```
nat:Set
0:El nat
succ : El nat }->\mathrm{ El nat
+:El nat }->\mathrm{ El nat }->\mathrm{ El nat
list: El nat }->\mathrm{ Set
x+0\hookrightarrowx
nil : El (list 0)
x + succ y }u\mathrm{ succ ( }x+y\mathrm{ )
cons: \Pix : El nat. El list x }->E/\mathrm{ nat }->E|(\mathrm{ list (succ x))
concat: }\Pix,y:E| nat. EI (list x)->EI (list y) ->EI (list (x+y))
```

- We have $\ell: E l$ list (succ 0$) \vdash$ concat (succ 0$) 0 \ell$ nil : El list (succ $0+0)$
- We have $[\vdash$ list (succ $0+0): S e t] \equiv[\vdash$ list $(\operatorname{succ} 0): S e t]$

Example: natural numbers and lists

```
nat:Set
0:El nat
succ : El nat }->\mathrm{ El nat
+:El nat }->\mathrm{ El nat }->\mathrm{ El nat
list: El nat }->\mathrm{ Set
x+0\hookrightarrowx
nil : El (list 0)
x + succ y }u\mathrm{ succ ( }x+y\mathrm{ )
cons: \Pix : El nat. El list x }->E/\mathrm{ nat }->E|(\mathrm{ list (succ x))
concat: }\Pix,y:E| nat. EI (list x)->EI (list y) ->EI (list (x+y))
```

- We have $\ell: E l$ list (succ 0$) \vdash$ concat (succ 0$) 0 \ell$ nil : El list (succ $0+0)$
- We have $[\vdash E /($ list $(\operatorname{succ} 0+0)):$ TYPE $] \equiv[\vdash E /($ list $(\operatorname{succ} 0)):$ TYPE $]$

Method

- Goal: replace user-defined rewrite rules by equational axioms
- In the signature: replace each user-defined rewrite rule $\ell \hookrightarrow r$ by an equational axiom $\ell=r$
- In the derivations: replace each use of the conversion rule

$$
\text { "from } t: A \text { we get } t: B \text { with } A \equiv B \text { " }
$$

by the insertion of a transport
"from $t: A$ we get transp $p t: B$ with $p: A=B$ "

Equality

Two equalities

- In the $\lambda \Pi$-calculus modulo theory, we have a hierarchy between
- objects u : A
- types A : TYPE
- Two equalities: one for objects, one for types

Equality between objects

- Heterogeneous: to compare objects of different types [McBride, 1999]
- Notation: $u_{A} \approx_{B} v$ with $u: A, v: B, A:$ TYPE and $B:$ TYPE
- Axioms: reflexivity, symmetry, transitivity
- Additional axiom: in the homogeneous case, it is a Leibniz equality

$$
\operatorname{leib}_{A}^{\text {Prf }}: \Pi u, v: A . u_{A} \approx_{A} v \rightarrow \Pi P: A \rightarrow E l \text { o. } \operatorname{Prf}(P u) \rightarrow \operatorname{Prf}(P v)
$$

Equality between types

- We cannot define an equality between types since TYPE \rightarrow TYPE \rightarrow TYPE is ill-typed
- Intuition:

$$
\begin{aligned}
\text { Prf } a & \approx \operatorname{Prf} b X & \text { but } & a \approx b \checkmark \\
E I a & \approx E I b X & \text { but } & a \approx b \checkmark
\end{aligned}
$$

Small types

■ Small types: types convertible using $\Sigma_{p r e}$ with types of the form

$$
\begin{gathered}
\mathcal{S}::=\operatorname{Set} \mid \mathcal{S} \rightarrow \mathcal{S} \\
\mathcal{P}::=\operatorname{Prf} \text { a }|\mathcal{P} \rightarrow \mathcal{S}| \Pi z: \mathcal{S} . \mathcal{P} \\
\mathcal{E}::=E|b| \mathcal{E} \rightarrow \mathcal{S} \mid \Pi z: \mathcal{S} . \mathcal{E}
\end{gathered}
$$

■ Set $\rightarrow($ Set \rightarrow Set $) \checkmark$
$\operatorname{Prf} a \rightarrow \operatorname{Prf} b$ convertible with $\operatorname{Prf}\left(a \Rightarrow_{d}(\lambda z: \operatorname{Prf} a . b)\right) \checkmark$ Prf $a \rightarrow$ Set \rightarrow Prf $b x$

- In practice, all types are small

Equality between small types

- Equality $\kappa(A, B)$ between small types A et B

$$
\begin{gathered}
\kappa\left(\text { Prf } a_{1}, \operatorname{Prf} a_{2}\right):=a_{1} \approx a_{2} \quad \kappa\left(E l a_{1}, E l a_{2}\right):=a_{1} \approx a_{2} \quad \kappa(S, S):=\text { True if } S \in \mathcal{S} \\
\kappa\left(T_{1} \rightarrow S, T_{2} \rightarrow S\right):=\kappa\left(T_{1}, T_{2}\right) \text { if } S \in \mathcal{S} \\
\kappa\left(\Pi z: S . T_{1}, \Pi z: S . T_{2}\right):=\Pi z: S . \kappa\left(T_{1}, T_{2}\right) \text { if } S \in \mathcal{S}
\end{gathered}
$$

- Axiom: Functional extensionality with different domains

$$
\begin{aligned}
\text { fun }_{A_{1}, A_{2}, B_{1}, B_{2}}: & \Pi f_{1}:\left(\Pi x: A_{1} \cdot B_{1}\right) \cdot \Pi f_{2}:\left(\Pi y: A_{2} \cdot B_{2}\right) . \\
& \kappa\left(A_{1}, A_{2}\right) \\
& \rightarrow \Pi x: A_{1} \cdot \Pi y: A_{2} \cdot(x \approx y) \rightarrow\left(f_{1} x \approx f_{2} y\right) \\
& \rightarrow f_{1} \approx f_{2}
\end{aligned}
$$

Replacing rewrite rules by equational axioms

Transports

- Lemma: Let $t: A$ and $p: \kappa(A, B)$ with small types A and B.

There exists a term transp $p t$ such that:
$-\operatorname{transp} p t: B$
$-\operatorname{transp} p t{ }_{B} \approx_{A} t$

■ Idea of the translation: insert transports in the terms

Translation of terms

- Relation $\bar{t} \triangleleft t($ " \bar{t} is a translation of t ")

$$
\frac{\bar{t} \triangleleft t}{(\Pi x: \bar{t} . \bar{u}) \triangleleft(\Pi x: t . u)}
$$

No more conversion rules!

■ Lemma: if \bar{t} and \bar{t}^{\prime} are two translations of t, then $\bar{t} \approx \bar{t}^{\prime}$

Translation of signatures

$$
\overline{\rangle \triangleleft\rangle} \quad \frac{\bar{\Sigma} \triangleleft \Sigma}{} \overline{(\bar{\Sigma}, c: \bar{A}) \triangleleft(\Sigma, c: A)}
$$

When $\ell, r: A$ with free variables $\boldsymbol{x}: \boldsymbol{B}$

$$
\frac{\bar{\Sigma} \triangleleft \Sigma \quad \bar{\ell} \triangleleft \ell \quad \bar{r} \triangleleft r \quad \bar{B} \triangleleft B \quad \bar{A} \triangleleft A}{\left(\bar{\Sigma}, \mathrm{eq}_{\ell r}: \Pi x: \bar{B} \cdot \bar{\ell}_{\bar{A}} \approx_{\bar{A}} \bar{r}\right) \triangleleft(\Sigma, \ell \hookrightarrow r)}
$$

No more rewrite rules!

Main result

Let a theory $\mathcal{T}=\left(\Sigma_{\text {pre }} \cup \Sigma_{\mathcal{T}}\right)$ such that all types are small.

- There exists a theory $\mathcal{T}^{a x}=\left(\Sigma_{\text {pre }} \cup \Sigma_{\text {eq }} \cup \bar{\Sigma}_{\mathcal{T}}\right)$ with $\Sigma_{\text {pre }}$ the signature defining the equalities
- For every $A \equiv B$ in \mathcal{T} with A and B small types, there exists some $p: \kappa(\bar{A}, \bar{B})$ in $\mathcal{T}^{\text {ax }}$
- For every $t: A$ in \mathcal{T}, we have $\bar{t}: \bar{A}$ in $\mathcal{T}^{\text {ax }}$

Axiomatized theory $\mathcal{T}^{\text {ax }}$

- Fully axiomatized user-defined signature $\bar{\Sigma}_{\mathcal{T}}$
\hookrightarrow Only the 4 rules of the prelude encoding in $\mathcal{T}^{\text {ax }}$

■ Conservativity: \mathcal{T} is conservative over $\mathcal{T}^{\text {ax }}$

- Relative consistency: if $\mathcal{T}^{\text {ax }}$ is consistent then \mathcal{T} is also consistent

Conclusion

Takeaway message

- The $\lambda \Pi$-calculus modulo theory
- General logical framework
- Finite hierarchy of sorts and no identity types

■ User-defined rewrite rules can be replaced by equational axioms
\hookrightarrow In practice, theories with prelude encoding and small types

- Application: interoperability via DEDUKTI

Check out the paper for more details!

